Parallel sampling of Gaussian Markov random fields

Ingelin Steinsland

ingelins@math.ntnu.no

Norwegian University of Science and Technology

Outline

- Parallelisation, why, how and how good.
- Parallel sampling of GMRFs
 - How
 - Performance
 - Analysis of Lancaster Campylobacter data.

Why use parallel computers?

- Well known problems:
 - Slow programs"
 - Not enough memory to solve a large problem.

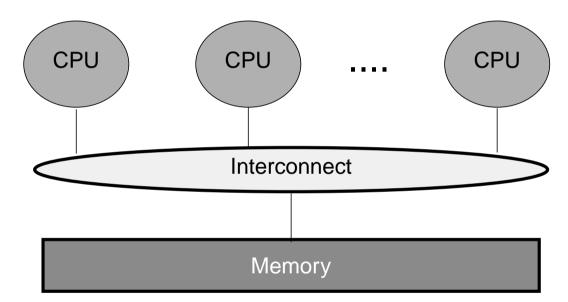
Why use parallel computers?

- Well known problems:
 - Slow programs"
 - Not enough memory to solve a large problem.
- Speed faster programs
- Size enabled to solve larger problems

Parallel computer model

Multiple Instructions Multiple Data (MIMD)

MIMD-SM (Shared Memory):

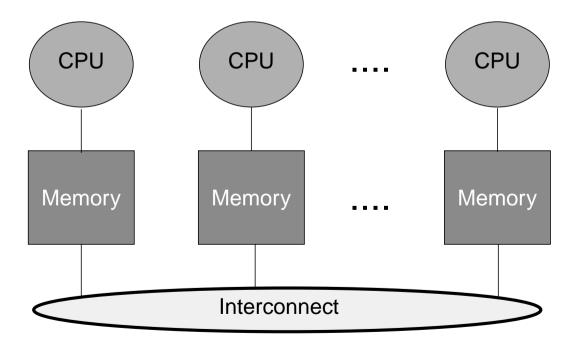


Communication: shared address space.

Parallel computer model

Multiple Instructions Multiple Data (MIMD)

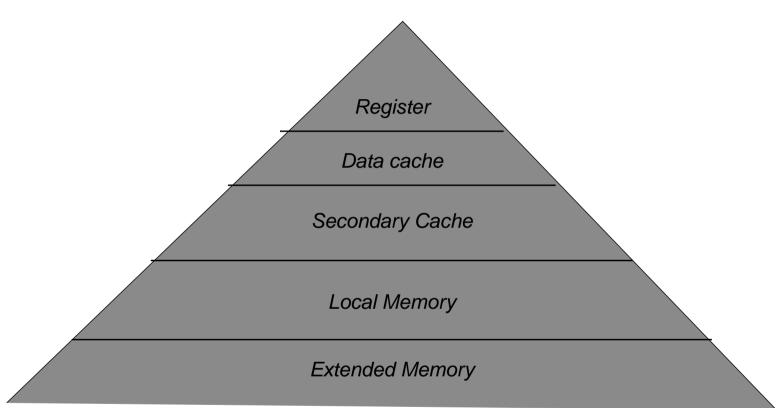
- MIMD-SM (Shared Memory): Communication: shared address space.
- MIMD-DM (Distributed Memory):



Communication: message passing

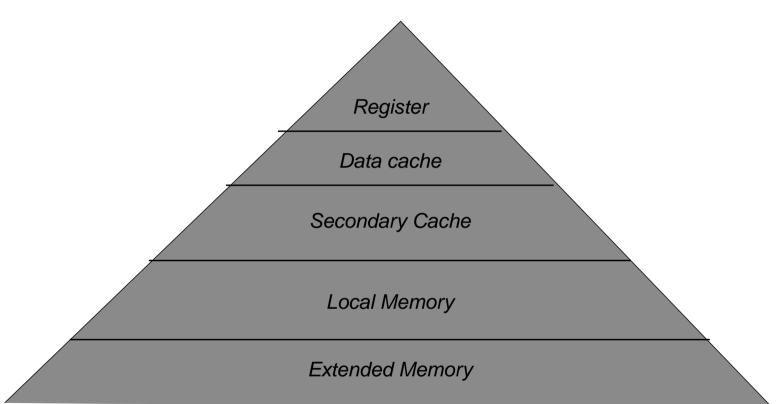
Communication

Can be thought of as extended memory;



Communication

Can be thought of as extended memory;



• Communication tine (T_C) model: $T_C = T_{IC} + \frac{n_{Data}}{B}$ T_{IC} : initial cost, n_{Data} : amount of data and B: bandwidth Parallel sampling of Gaussian Markov random fields - p.5/27

Designing parallel algorithms

"Parallel algorithm design (...) it requires the sort of integrative thought that is commonly referred as "creativity"."

We often need to change our approach to the problem. Main gold: Speed-up and/or handle larger problems.

Designing parallel algorithms

"Parallel algorithm design (...) it requires the sort of integrative thought that is commonly referred as "creativity"."

We often need to change our approach to the problem. Main gold: Speed-up and/or handle larger problems.

- Scalability: Should be able to benefit from more computers.
- Unique solution: Should exist a sequential program that always gives the same result.

Designing strategies

- Functional decomposition,
 same data, different functions.
- Domain decomposition,
 - different data, same functions.

Performance measures

p: number of processors, A problem size.

• Speed-up
$$(p) = \frac{\operatorname{time}_1(A)}{\operatorname{time}_p(A)}$$

.

Performance measures

p: number of processors, A problem size.

• Speed-up
$$(p) = \frac{\operatorname{time}_1(A)}{\operatorname{time}_p(A)}$$

• Scaled speed-up
$$(p) = \frac{p \cdot \text{time}_1(A)}{\text{time}_p(p \cdot A)}$$

Performance measures

p: number of processors, A problem size.

• Speed-up
$$(p) = \frac{\operatorname{time}_1(A)}{\operatorname{time}_p(A)}$$

- Scaled speed-up $(p) = \frac{p \cdot \text{time}_1(A)}{\text{time}_p(p \cdot A)}$
- Amdahl's law (f; parallisable fraction):

Speed-up =
$$\frac{1}{(1-f) + \frac{f}{p}}$$

20% sequential \Rightarrow max speed-up 5.

Performance measures

p: number of processors, A problem size.

• Speed-up
$$(p) = \frac{\operatorname{time}_1(A)}{\operatorname{time}_p(A)}$$

- Scaled speed-up $(p) = \frac{p \cdot \text{time}_1(A)}{\text{time}_p(p \cdot A)}$
- Amdahl's law (f; parallisable fraction):

Speed-up =
$$\frac{1}{(1-f) + \frac{f}{p}}$$

20% sequential \Rightarrow max speed-up 5.

Super linear speed-up.

Communication overhead and load balance

- **•** Load balance: Computers should not be idle.
- Communication overhead: Communication is expensive, often the major part of the extra cost.

Parallel exact sampling of GMRFs

- Computational benefits of GMRFs (sequential).
- Parallelisation of GMRFs
- Use methods from numerical linear algebra.
- Use GMRFs in Markov chain Monte Carlo simulation.

Exact sampling from multivariate Gaussian distribution

- $x \sim N(0, Q^{-1}) \Rightarrow \pi(x) \propto \exp(-\frac{1}{2}x^T Q x)$
- $Q = LL^T$, L is the Choleskey factor, lower triangular
- $\pi(x) \propto \exp(-\frac{1}{2}x^T L L^T x)$
- $z \sim N(0, I)$ i.i.d. standard Gaussian.
- $\pi(z) \propto \exp(-\frac{1}{2}z^T z)$
- The solution of $L^T x = z$ is a sample from our Gaussian distribution.

Exact sampling from multivariate Gaussian distribution

- $x \sim N(0, Q^{-1}) \Rightarrow \pi(x) \propto \exp(-\frac{1}{2}x^T Q x)$
- $Q = LL^T$, L is the Choleskey factor, lower triangular
- $\pi(x) \propto \exp(-\frac{1}{2}x^T L L^T x)$
- $z \sim N(0, I)$ i.i.d. standard Gaussian.
- $\pi(z) \propto \exp(-\frac{1}{2}z^T z)$
- The solution of $L^T x = z$ is a sample from our Gaussian distribution.

Computational complexity: $\mathcal{O}(n^3)$.

Why GMRF

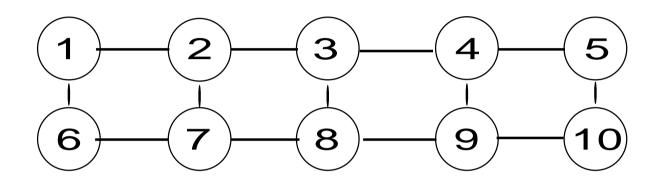
- The Markov property makes Q sparse.
- Precision matrix: $Q_{ij} = 0 \Rightarrow x_i$ and x_j are conditional independent given $\forall x_k, k \neq i, j$
- Choleskey factor: $L_{ij}^T = 0 \ (i < j) \Rightarrow x_i$ and x_j are conditional independent given $\forall x_k \mid k \neq j \land k > i.$

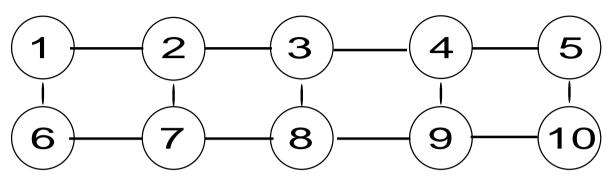
Why GMRF

- The Markov property makes Q sparse.
- Precision matrix: $Q_{ij} = 0 \Rightarrow x_i$ and x_j are conditional independent given $\forall x_k, k \neq i, j$
- Choleskey factor: $L_{ij}^T = 0 \ (i < j) \Rightarrow x_i$ and x_j are conditional independent given $\forall x_k \mid k \neq j \land k > i.$

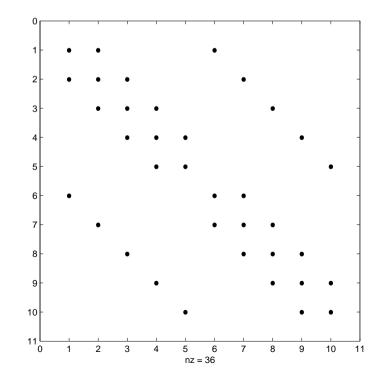
Sparse $Q \Rightarrow$ sparse L?

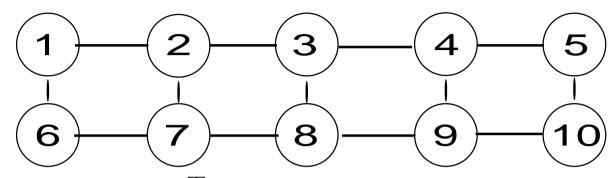
- Each variable is a node.
- Edges between neighbours



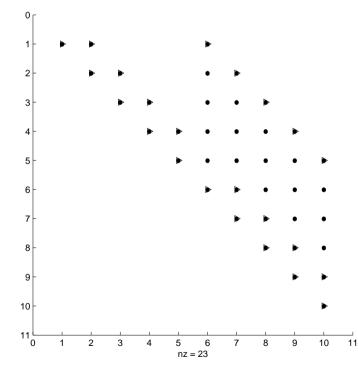


Precision matrix:

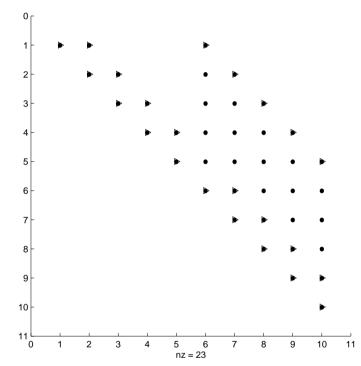




Choleskey factor L^T , \triangle non-zeros in Q.



Choleskey factor L^T , \triangle non-zeros in Q.

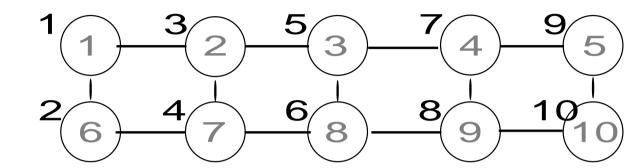


Fill-in: The elements that are zero in Q, but non-zero in L.

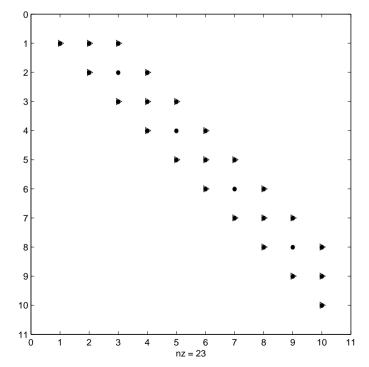
Reduce fi ll-in \Rightarrow cheaper calculations.

- The ordering of the variables are dummy.
- A reordering can reduce the fill-in.

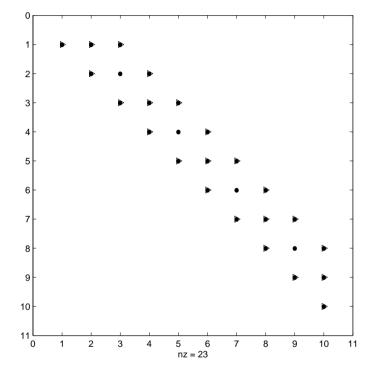
Reordered graph:



New Choleskey factor L, \triangle non-zeros in Q.

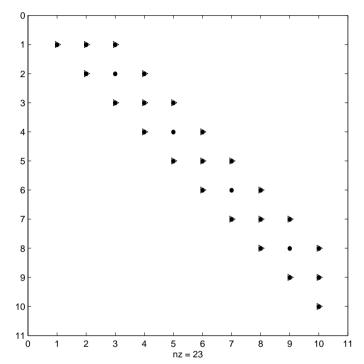


New Choleskey factor L, \triangle non-zeros in Q.



Original ordering: fi ll-in = 16 Reordered graph: fi ll-in = 4

New Choleskey factor L, \triangle non-zeros in Q.



Original ordering: fi ll-in = 16 Reorder graph: fi ll-in = 4

• Computational complexity spatial GMRF: $O(n^{1.5})$

Fast sampling GMRF

Algorithm:

- Reorder (reduce fi ll-in)
- Calculate L
- Solve $L^T x = z$

Fast sampling GMRF

Algorithm:

- Reorder (reduce fi ll-in)
- Calculate L
- Solve $L^T x = z$

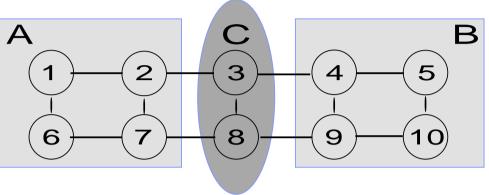
Triangular system:

$$\mathbf{L}^{\mathsf{T}} * \mathbf{x} = \mathbf{z}$$

$$\pi(x) = \pi(x_n)\pi(x_{n-1}|x_n)\dots\pi(x_1|x_2,x_3,\dots,x_n)$$

Parallel sampling of GMRF

Intuitive idea:



- If we have a sample $x_C \sim \pi_C(x)$.
- $x_A \sim \pi_{A|C}(x)$ and $x_B \sim \pi_{B|C}(x)$ are independent
- $x_A | x_C$ and $x_B | x_C$ can be sampled in parallel.
- $x^* = (x_A, x_C, x_B)$ a sample from our GMRF.

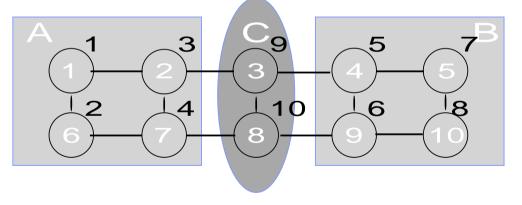
 Markov property used to get conditional independent

 Sets

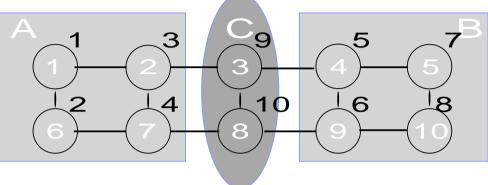
 Parallel sampling of Gaussian Markov random fields – p.16/27

Parallel solving of triangular system $L^{T} * x = z$

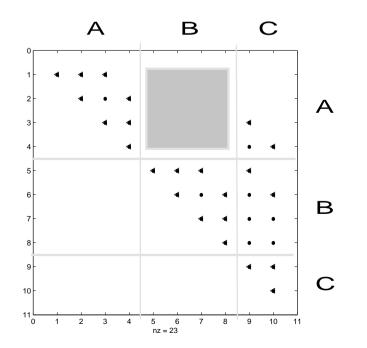
Reordering $x_r = (x_A, x_B, x_C)$:



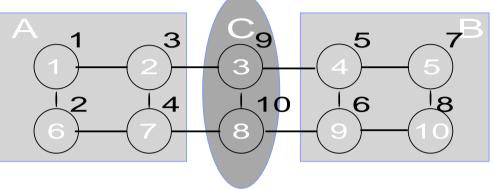
Parallel solving of triangular system

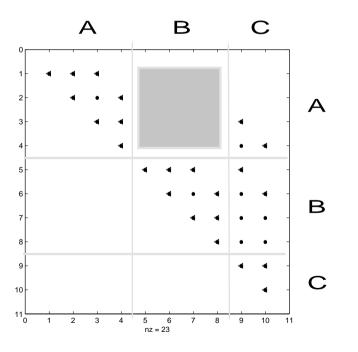


Choleskey factor L^T



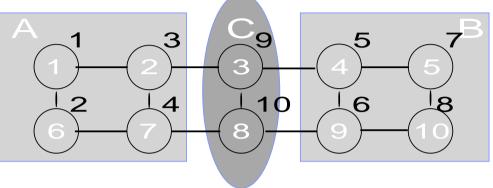
Parallel solving of triangular system

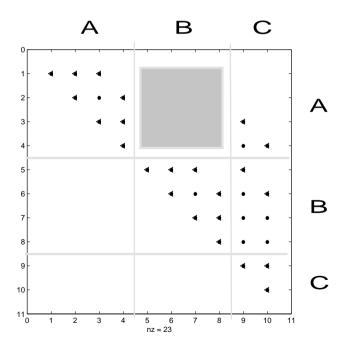




 $AB \text{ zero} \Rightarrow A \text{ and } B \text{ can be calculated in parallel.}$

Parallel solving of triangular system

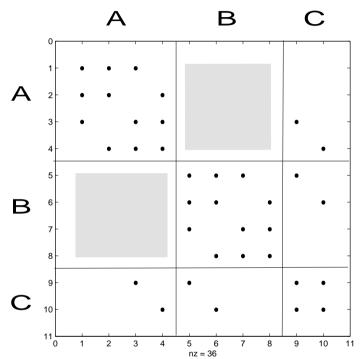




Parallel ordering; fi ll-in = 8 (best sequential; fi ll-in = 4)

Parallel Choleskey factorisation

Precision matrix for x_r :



Choleskey decomposition is done by "column wise right looking elimination"
 Choleskey part OK.

Interpretation and computers

Library

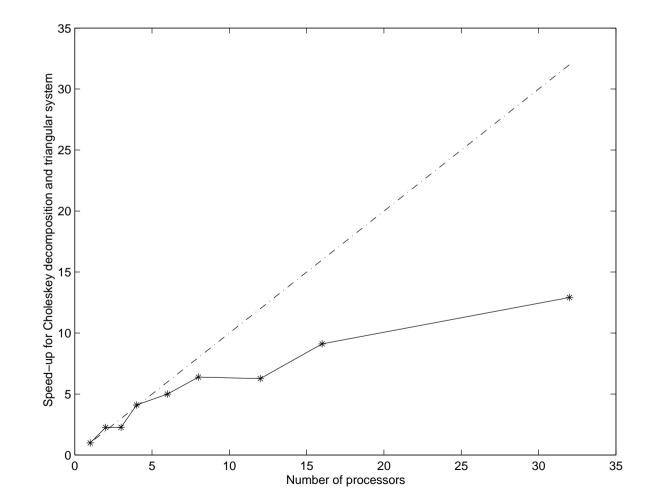
- Use WSMP ((the Watson Sparse Matrix Package, only for IBM RS6000 workstation and IBM SP systems)
- Dimension should be ≥ 5000 .

Computers

- 48 node SP/2 system (Queens University Belfast)
- 160MHz Power2CS processors.
- Nodes have between 256Mb and 1Gb of main memory.

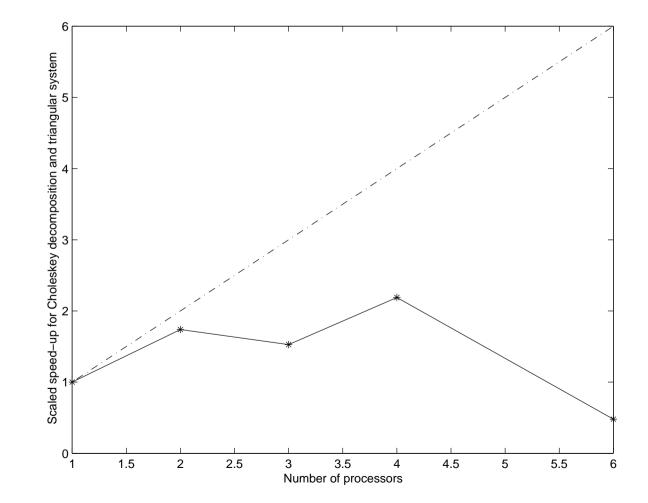
Performance example 1

Sampling GMRFs on a 400×400 lattice (160000 variables).



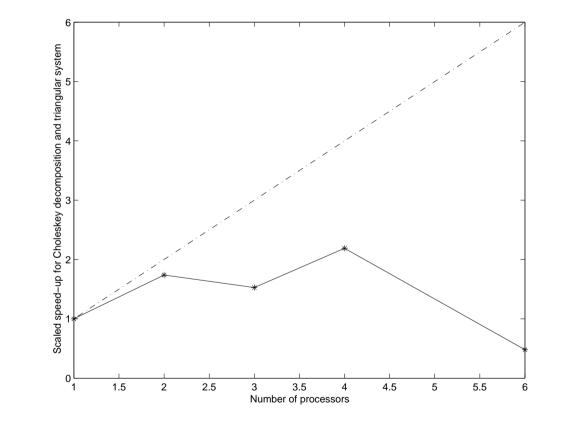
Performance example 2

• Sampling GMRFs on a $400\sqrt{p} \times 400\sqrt{p}$ lattice (160000 $\cdot p$ variables).



Performance example 2

• Sampling GMRFs on a $400\sqrt{p} \times 400\sqrt{p}$ lattice (160000 $\cdot p$ variables).

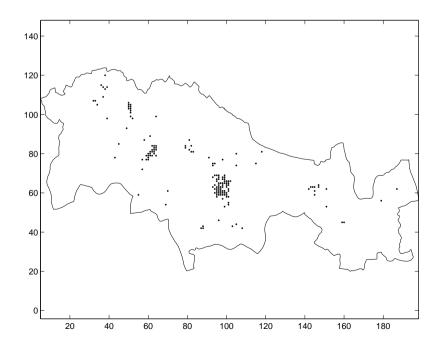


• $565 \times 565 \ (p = 2)$ problem too large for one processor.

Example 3

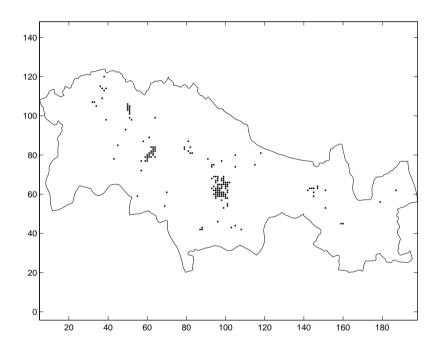
Campylobacter infections in north Lancaster.

- The data
 - 399 outbreak of enteric infections, m_{ij}
 - 234 of these are campylobacter, y_{ij}
 - their location (i, j) (248 different location).



Example 3

Campylobacter infections in north Lancaster.



• Of interest: The proportion of enteric outbreaks that are Campylobacter and its spatial variation.

GMRF model

• GMRF model:

• Probability of 'success' p_i given by

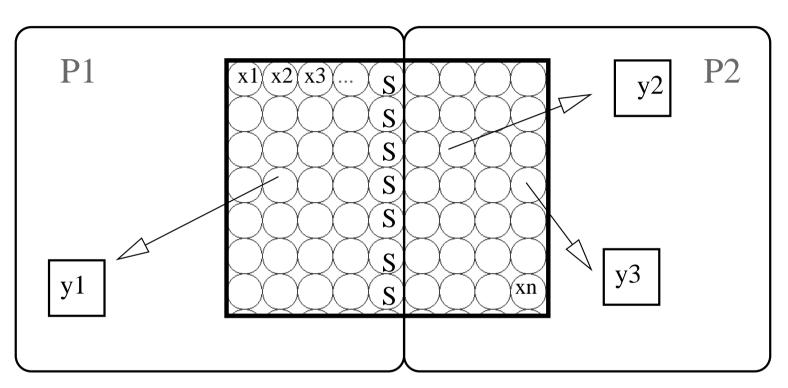
$$\log(\frac{p_i}{1-p_i}) = \beta + x_i$$

•
$$x = (x_1, x_2, ..., x_n)$$
 a GMRF.

 Traditionally has GRF models been used, GMRF models almost equal and gives large computational benefits.

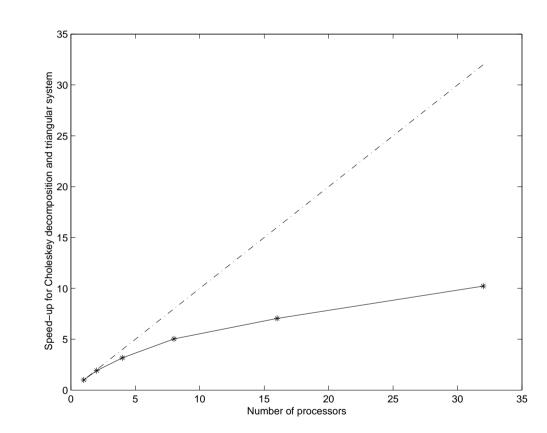
Parallelisation

Domain decomposition:

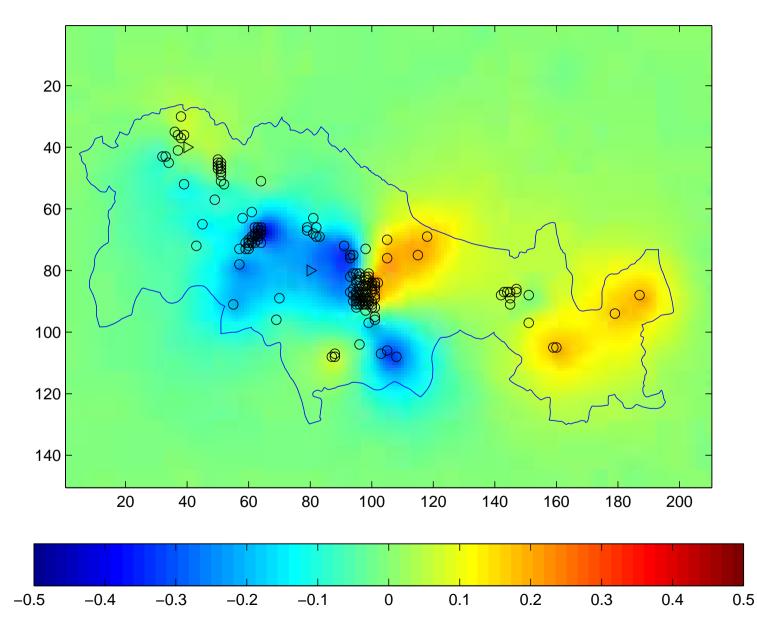


Performance

Speed-up:



Estimated mean



Summary

- Parallelise to
 - solve problems faster and/or
 - be able to solve larger problems.
- Often have to take a new approach to the problem.
- Two main strategies;
 - functional decomposition and
 - domain decomposition
- Communication between processors is often the major extra cost of parallelisation;
 - load balance and
 - communication overhead.