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Outline
Parallelisation, why, how and how good.

Parallel sampling of GMRFs
How
Performance
Analysis of Lancaster Campylobacter data.
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Why use parallel computers?
Well known problems:

“Slow programs”
Not enough memory to solve a large problem.

Speed - faster programs

Size - enabled to solve larger problems
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Parallel computer model
Multiple Instructions Multiple Data (MIMD)

MIMD-SM (Shared Memory):

CPU
 CPU
 CPU


Memory


....


Interconnect


Communication: shared address space.
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Parallel computer model
Multiple Instructions Multiple Data (MIMD)

MIMD-SM (Shared Memory):
Communication: shared address space.

MIMD-DM (Distributed Memory):

CPU
 CPU
 CPU


Memory
 Memory
 Memory
....


....


Interconnect


Communication: message passing
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Communication
Can be thought of as extended memory;

Register


Data cache


Secondary Cache


Local Memory


Extended Memory


Communication tine (TC) model:
TC = TIC + nData

B

TIC: initial cost, nData: amount of data and
B: bandwidth
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Designing parallel algorithms
"Parallel algorithm design (...) it requires the
sort of integrative thought that is commonly
referred as "creativity"."

We often need to change our approach to the problem.
Main gold: Speed-up and/or handle larger problems.

Scalability: Should be able to benefit from more
computers.

Unique solution: Should exist a sequential
program that always gives the same result.

Parallel sampling of Gaussian Markov random fields – p.6/27



N
T

N
U

Designing parallel algorithms
"Parallel algorithm design (...) it requires the
sort of integrative thought that is commonly
referred as "creativity"."

We often need to change our approach to the problem.
Main gold: Speed-up and/or handle larger problems.

Scalability: Should be able to benefit from more
computers.

Unique solution: Should exist a sequential
program that always gives the same result.

Parallel sampling of Gaussian Markov random fields – p.6/27



N
T

N
U

Designing strategies
Functional decomposition,
- same data, different functions.

Domain decomposition,
- different data, same functions.
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Performance measures
p: number of processors, A problem size.

Speed-up(p) = time1(A)

timep(A)

Scaled speed-up(p) = p·time1(A)

timep(p·A)

Amdahl’s law (f; parallisable fraction):

Speed-up =
1

(1 − f) + f
p

20% sequential ⇒ max speed-up 5.

Super linear speed-up.
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Communication overhead and load
balance

Load balance: Computers should not be idle.

Communication overhead: Communication is
expensive, often the major part of the extra cost.
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Parallel exact sampling of GMRFs

Computational benefits of GMRFs (sequential).

Parallelisation of GMRFs

Use methods from numerical linear algebra.

Use GMRFs in Markov chain Monte Carlo
simulation.
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Exact sampling from multivariate
Gaussian distribution

x ∼ N(0, Q−1) ⇒ π(x) ∝ exp(−1
2x

TQx)

Q = LLT , L is the Choleskey factor, lower
triangular

π(x) ∝ exp(−1
2x

TLLTx)

z ∼ N(0, I) i.i.d. standard Gaussian.

π(z) ∝ exp(−1
2z

Tz)

The solution of LTx = z is a sample from our
Gaussian distribution.

Computational complexity: O(n3).
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Why GMRF
The Markov property makes Q sparse.

Precision matrix: Qij = 0 ⇒ xi and xj are
conditional independent given ∀xk, k 6= i, j

Choleskey factor: LT
ij = 0 (i < j) ⇒ xi and

xj are conditional independent given
∀xk | k 6= j ∧ k > i.

Sparse Q ⇒ sparse L?
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Graph
Each variable is a node.

Edges between neighbours

1
 2
 3
 4
 5


6
 7
 8
 9
 10


Fill-in: The elements that are zero in Q, but non-zero
in L.

Reduce fill-in ⇒ cheaper calculations.
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Graph

1
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Precision matrix:

0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

6

7

8

9

10

11

nz = 36

Fill-in: The elements that are zero in Q, but non-zero
in L.

Reduce fill-in ⇒ cheaper calculations.
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Graph
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Choleskey factor LT , 4 non-zeros in Q.
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Fill-in: The elements that are zero in Q, but non-zero
in L.
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Graph
Choleskey factor LT , 4 non-zeros in Q.
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Reordering
The ordering of the variables are dummy.

A reordering can reduce the fill-in.
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Reordering
Reordered graph:

1
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 4
 5
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1
 3 5 7 9

2 4 6 8 10


New Choleskey factor L, 4 non-zeros in Q.
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Reordering
New Choleskey factor L, 4 non-zeros in Q.
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nz = 23

Original ordering: fill-in = 16

Reordered graph: fill-in = 4
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Reordering
New Choleskey factor L, 4 non-zeros in Q.

0 1 2 3 4 5 6 7 8 9 10 11
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11

nz = 23

Original ordering: fill-in = 16
Reorder graph: fill-in = 4

Computational complexity spatial GMRF:
O(n1.5)
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Fast sampling GMRF
Algorithm:

Reorder (reduce fill-in)

Calculate L

Solve LTx = z

Triangular system:
L x
 z
=

=*

*T

π(x) = π(xn)π(xn−1|xn) . . . π(x1|x2, x3, . . . , xn)
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Parallel sampling of GMRF
Intuitive idea:

1 2 3
 4 5

6 7 8
 9 10

A
 B
C


If we have a sample xC ∼ πC(x).

xA ∼ πA|C(x) and xB ∼ πB|C(x) are independent

xA|xC and xB|xC can be sampled in parallel.

x∗ = (xA, xC , xB) a sample from our GMRF.

Markov property used to get conditional independent

sets Parallel sampling of Gaussian Markov random fields – p.16/27
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Parallel solving of triangular sys-
tem

L x
 z
=

=*

*T

Reordering xr = (xA, xB, xC):

1 2 3
 4 5

6 7 8
 9 10

A
 B
C
1 3 9 5 7

2 4 10 6 8
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Parallel solving of triangular sys-
tem

1 2 3
 4 5

6 7 8
 9 10

A
 B
C
1 3 9 5 7

2 4 10 6 8

Choleskey factor LT
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Parallel solving of triangular sys-
tem

1 2 3
 4 5
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AB zero ⇒ A and B can be calculated in parallel.
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Parallel solving of triangular sys-
tem

1 2 3
 4 5

6 7 8
 9 10

A
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C
1 3 9 5 7
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Parallel ordering; fill-in = 8 (best sequential; fill-in = 4)
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Parallel Choleskey factorisation
Precision matrix for xr:
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Choleskey decomposition is done by "column
wise right looking elimination" ⇒ Choleskey part
OK.
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Interpretation and computers
Library

Use WSMP ((the Watson Sparse Matrix Package,
only for IBM RS6000 workstation and IBM SP
systems)

Dimension should be ≥ 5000.

Computers

48 node SP/2 system (Queens University Belfast)

160MHz Power2CS processors.

Nodes have between 256Mb and 1Gb of main
memory.
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Performance example 1
Sampling GMRFs on a 400 × 400 lattice (160000
variables).
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Performance example 2
Sampling GMRFs on a 400

√
p × 400

√
p lattice

(160000 · p variables).
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Performance example 2
Sampling GMRFs on a 400

√
p × 400

√
p lattice

(160000 · p variables).
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565 × 565 (p = 2) problem too large for one
processor.
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Example 3
Campylobacter infections in north Lancaster.

The data
399 outbreak of enteric infections, mij

234 of these are campylobacter, yij

their location (i, j) (248 different location).
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Example 3
Campylobacter infections in north Lancaster.
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Of interest: The proportion of enteric outbreaks
that are Campylobacter and its spatial variation.
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GMRF model
GMRF model:

Probability of ’success’ pi given by

log(
pi

1 − pi

) = β + xi

β location independent constant
x = (x1, x2, . . . , xn) a GMRF.

Traditionally has GRF models been used, GMRF
models almost equal and gives large
computational benefits.
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Parallelisation
Domain decomposition:

S

S
S

S
S
S
S

xn

... P2P1

y1 y3

y2x3x2x1
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Performance
Speed-up:
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Estimated mean
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Summary
Parallelise to

solve problems faster and/or
be able to solve larger problems.

Often have to take a new approach to the problem.

Two main strategies;
functional decomposition and
domain decomposition

Communication between processors is often the
major extra cost of parallelisation;

load balance and
communication overhead.
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