Partially conditional blocks approximations used in MCMC

Ingelin Steinsland & Håvard Rue

ingelins@math.ntnu.no

Norwegian University of Science and Technology

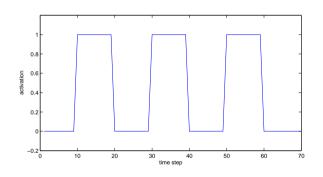
Outline

- Introduction functional Magnetic Resonance Imaging (fMRI) problem.
- Latent spatial Markov models.
- One-block Metropolis-Hastings algorithm.
- Partially conditional blocks approximations
- Results fMRI problem.
- Closing remarks.

fMRI

functional Magnetic Resonance Imaging -Data from a visual stimulation experiment.

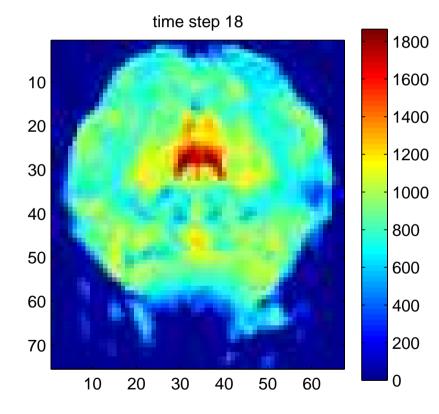
- Stimulus: 8 Hz flickering checkerboard.
- 4 periods (a 30 sec.) rest, 3 periods stimulus.

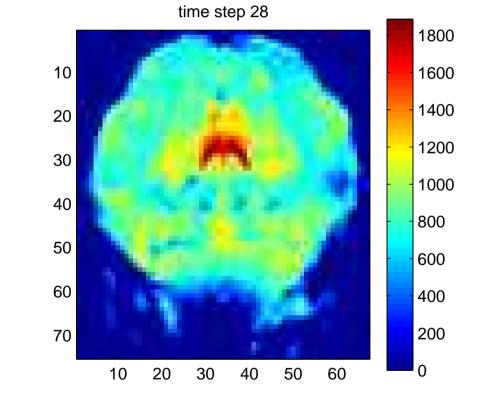


- Cross section of the brain observed every 3rd sec.
- Observe BOLD effects.

fMRI

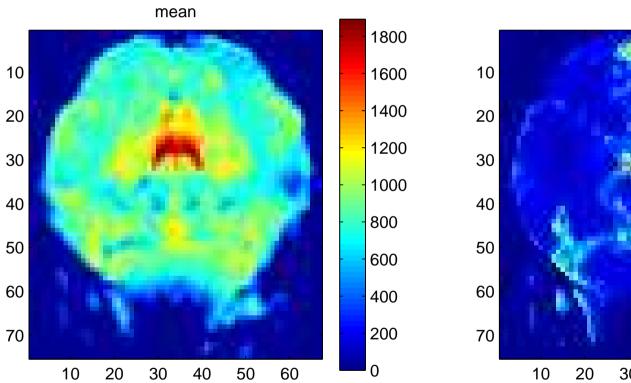
functional Magnetic Resonance Imaging -Data from a visual stimulation experiment.

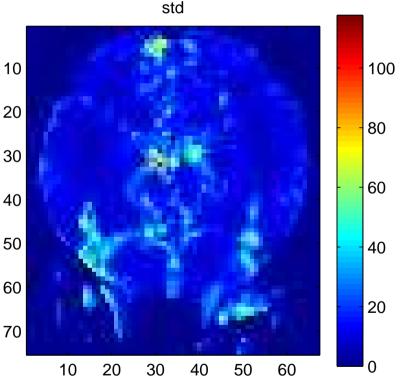




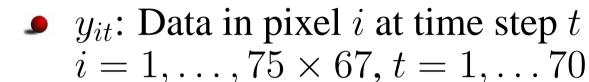
fMRI

functional Magnetic Resonance Imaging -Data from a visual stimulation experiment.





$$y_{it} = a_i + z_t b_{it} + \epsilon_{it}$$



$$y_{it} = a_i + z_t b_{it} + \epsilon_{it}$$

- y_{it} : Data in pixel *i* at time step *t* $i = 1, \dots, 75 \times 67, t = 1, \dots, 70$
- a_i : Baseline image, pixel $i, i = 1, ..., 75 \times 67$

$$y_{it} = a_i + z_t b_{it} + \epsilon_{it}$$

- y_{it} : Data in pixel *i* at time step *t* $i = 1, \dots, 75 \times 67, t = 1, \dots, 70$
- a_i : Baseline image, pixel $i, i = 1, ..., 75 \times 67$
- z_t : Transformed stimulus at time step t, t = 1, ..., 70
- b_{it} : Activation effect of pixel *i* at time step *t*, $i = 1, \dots, 75 \times 67, t = 1, \dots, 70$

$$y_{it} = a_i + z_t b_{it} + \epsilon_{it}$$

- y_{it} : Data in pixel *i* at time step *t* $i = 1, \dots, 75 \times 67, t = 1, \dots, 70$
- a_i : Baseline image, pixel $i, i = 1, ..., 75 \times 67$
- z_t : Transformed stimulus at time step t, t = 1, ..., 70
- b_{it} : Activation effect of pixel *i* at time step *t*, $i = 1, \dots, 75 \times 67, t = 1, \dots, 70$
- ϵ_{it} : Measurement error of pixel *i* at time step *t* $i = 1, \dots, 75 \times 67, t = 1, \dots, 70$

$$y_{it} = a_i + z_t b_{it} + \epsilon_{it}$$

 $\bullet \sim N(0, \tau_{Data}I) \to y_{it}|a, b \sim N(a_i + z_t b_{it}, \tau_{Data})$

$$y_{it} = a_i + z_t b_{it} + \epsilon_{it}$$

- > z ; use estimate from similar studies

$$y_{it} = a_i + z_t b_{it} + \epsilon_{it}$$

- GMRF (Gaussian Markov random field) for *a*: $\pi(a) \propto \exp(-\frac{1}{2}\tau_A \sum_{i \sim j} (a_i - a_j)^2)$

$$y_{it} = a_i + z_t b_{it} + \epsilon_{it}$$

- GMRF (Gaussian Markov random field) for *a*: $\pi(a) \propto \exp(-\frac{1}{2}\tau_A \sum_{i \sim j} (a_i - a_j)^2)$
- Time-space GMRF for b:

$$\pi(b) \propto \exp(-\frac{1}{2}\tau_B \sum_{t=1}^T \sum_{\substack{i \sim j}} (b_{it} - b_{jt})^2)$$

$$\exp(-\frac{1}{2}\tau_T \sum_{i=1}^{N} \sum_{\substack{t=1\\t \sim r}}^{N} (b_{it} - b_{ir})^2)$$

- GMRF for a: $\pi(a) \propto \exp(-\frac{1}{2}\tau_A \sum_{i \sim j} (a_i a_j)^2)$
- Time-space GMRF for *b*:

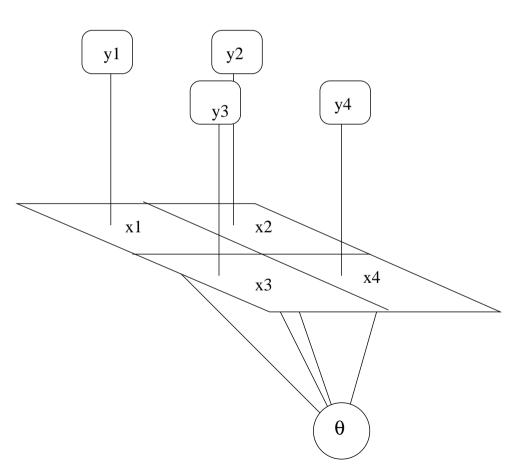
$$\pi(b) \propto \exp(-\frac{1}{2}\tau_B \sum_{t=1}^{T} \sum_{\substack{i \sim j \\ i \sim j}} (b_{it} - b_{jt})^2)$$
$$\exp(-\frac{1}{2}\tau_T \sum_{i=1}^{N} \sum_{\substack{i \sim r \\ t \sim r}} (b_{it} - b_{ir})^2)$$

• Posterior,
$$x = (a, b)$$
 and $\theta = (\tau_A, \tau_B, \tau_T, \tau_{Data})$:

$$\pi(x,\theta|y) \propto \pi(y|x)\pi(x|\theta)\pi(\theta)$$

Latent GMRF models used

- Mutually independent likelihoods
- $\pi(x|\theta) \sim GMRF$



Gaussian Markov random field

A GMRF $x = (x_1, x_2, ..., x_n)$ is:

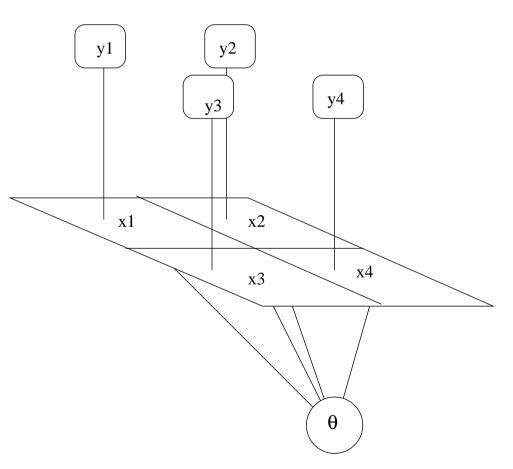
- Multivariate Gaussian distributed
- with a Markov property;
 - neighbourhood structure
 - x_i and x_j conditionally dependent only if they are neighbours

Gaussian Markov random field

A GMRF $x = (x_1, x_2, ..., x_n)$ is:

- Multivariate Gaussian distributed
- with a Markov property;
 - neighbourhood structure
 - x_i and x_j conditionally dependent only if they are neighbours
- Gives sparse precision matrix and computational benefits.
- All full conditional distribution are GMRFs, and easy to sample from and evaluate.

One-block updating scheme: x and θ are updated simultaneously.



- Given x^0 and θ^0
- for j = 0 : (niter 1)
 - $\textbf{ Sample } \theta^{new} \sim q(\theta|\theta^j)$

- Given x^0 and θ^0
- for j = 0 : (niter 1)
 - Sample $\theta^{new} \sim q(\theta|\theta^j)$
 - Sample $x^{new} \sim q(x|x^j, \theta^{new})$

- Given x^0 and θ^0
- for j = 0 : (niter 1)
 - Sample $\theta^{new} \sim q(\theta|\theta^j)$
 - Sample $x^{new} \sim q(x|x^j, \theta^{new})$
 - \checkmark Calculate α and accept / reject
 - if(accept)
 - $\theta^{j+1} = \theta^{new}$ and $x^{j+1} = x^{new}$
 - else

•
$$\theta^{j+1} = \theta^j$$
 and $x^{j+1} = x^j$

- Given x^0 and θ^0
- for j = 0 : (niter 1)
 - Sample $\theta^{new} \sim q(\theta|\theta^j)$
 - Sample $x^{new} \sim q(x|x^j, \theta^{new})$
 - \checkmark Calculate α and accept / reject
 - if(accept)
 - $\theta^{j+1} = \theta^{new}$ and $x^{j+1} = x^{new}$
 - else
 - $\theta^{j+1} = \theta^j$ and $x^{j+1} = x^j$
- Return $(x^1, x^2, \dots, x^{niter})$ and $(\theta^1, \theta^2, \dots, \theta^{niter})$

- Given x^0 and θ^0
- for j = 0 : (niter 1)
 - Sample $\theta^{new} \sim q(\theta|\theta^j)$
 - Sample $x^{new} \sim$

$$q(x|x^j, \theta^{new})$$

 \checkmark Calculate α and accept / reject

•
$$\theta^{j+1} = \theta^{new}$$
 and $x^{j+1} = x^{new}$

- else
 - $\ \, { \ \, } \ \, \theta^{j+1}=\theta^j \ {\rm and} \ x^{j+1}=x^j \\$
- Return $(x^1, x^2, \dots, x^{niter})$ and $(\theta^1, \theta^2, \dots, \theta^{niter})$

Challenge: To make a good and cheap proposal for x.

Our setting

- Gold: Want to construct a $q(x|x^{old}, \theta^{new})$ that:
 - Produces nearly independent samples from approximately $\pi(x|y, \theta^{new})$.
 - Is computationally feasible to sample from.
- Constraint: Too expensive to sample from an *n*-dim. distribution.
- Here: Construct a proposal for x which we can sample from and evaluate working only with smaller blocks.

Proposal from blocks

- Can use one full scan of a Gibbs sampler as $q(x|x^{old}, \theta^{new})$.
- Block Gibbs sampler used to get better convergence.

- $x: 100 \times 100$ GMRF, E(x) = 0 but $x^0 = 3$
- 5×5 neighbourhood
- A GMRF approximation to correlation function:

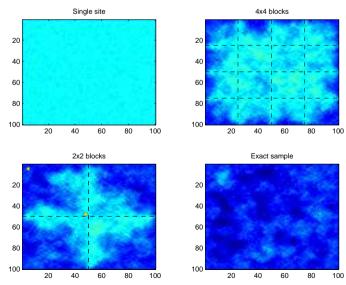
$$\rho(x_i, x_j) = \exp(\frac{-3d(x_i, x_j)}{r})$$

• $x: 100 \times 100$ GMRF, E(x) = 0 but $x^0 = 3$

- 5×5 neighbourhood
- A GMRF approximation to correlation function:

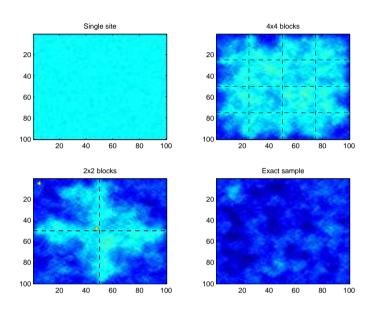
$$\rho(x_i, x_j) = \exp(\frac{-3d(x_i, x_j)}{r})$$

First iteration (r = 40)

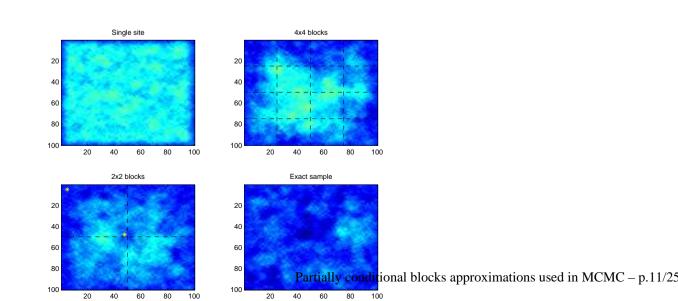


Partially conditional blocks approximations used in MCMC - p.11/25

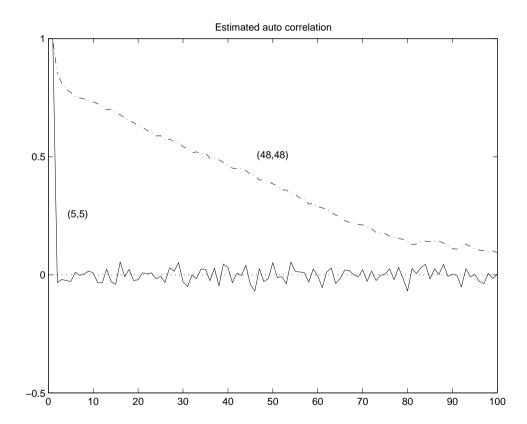
First iteration (r = 40)



200th iteration (r = 40)

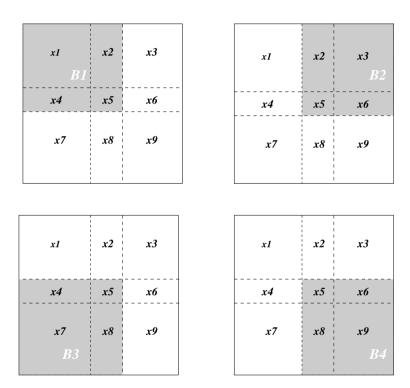


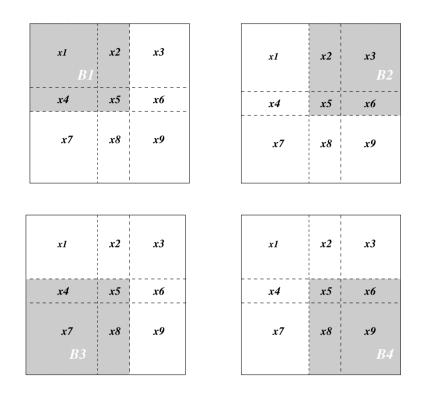
Estimated autocorrelation:



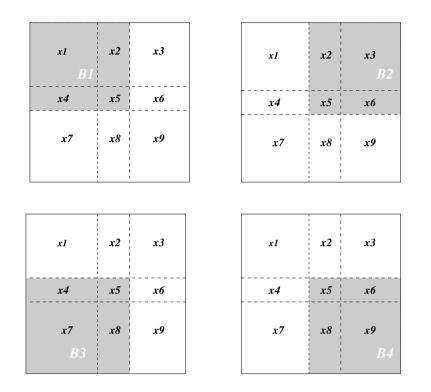
Idea: Let the blocks overlap.

Idea: Let the blocks overlap.

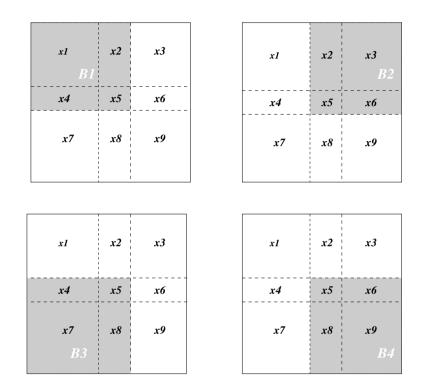




- Given x^i



- Given x^i



- - Sample $(x_1^{i+1}, x_2^{B1}, x_4^{B1}, x_5^{B1}) \sim \pi(x_{B_1} | x_3^i, x_6^i, x_7^i, x_8^i, x_9^i)$
 - Sample $(x_2^{i+1}, x_3^{i+1}, x_5^{B2}, x_6^{B2}) \sim \pi(x_{B_2} | x_1^{i+1}, x_4^{B1}, x_7^i, x_8^i, x_9^i)$
 - Sample $(x_4^{i+1}, x_5^{B3}, x_7^{i+1}, x_8^{B3}) \sim \pi(x_{B_3} | x_1^{i+1}, x_2^{i+1}, x_3^{i+1}, x_6^{B2}, x_9^i)$
 - Sample $(x_5^{i+1}, x_6^{i+1}, x_8^{i+1}, x_9^{i+1}) \sim \pi(x_{B_4} | x_1^{i+1}, x_2^{i+1}, x_3^{i+1}, x_4^{i+1}, x_7^{i+1})$
 - Return x^{i+1}

Partially conditional blocks approximations used in MCMC - p.12/25

Does it work?

As previous example with $r = \{10, 20, 40, 100\}$ and buffer = $\{0, 1, 2, 5, 10\}$

Buffer=1, r=10

Buffer=2, r=10

Buffer=5, r=10

Buffer=10, r=10

Exact sample, r=10

Buffer=1, r=20

Buffer=2, r=20

Buffer=5, r=20

Buffer=10, r=20

Exact sample, r=20

Buffer=1, r=40

Buffer=0, r=40

Buffer=2, r=40

Buffer=5, r=40

Buffer=10, r=40

Exact sample, r=40

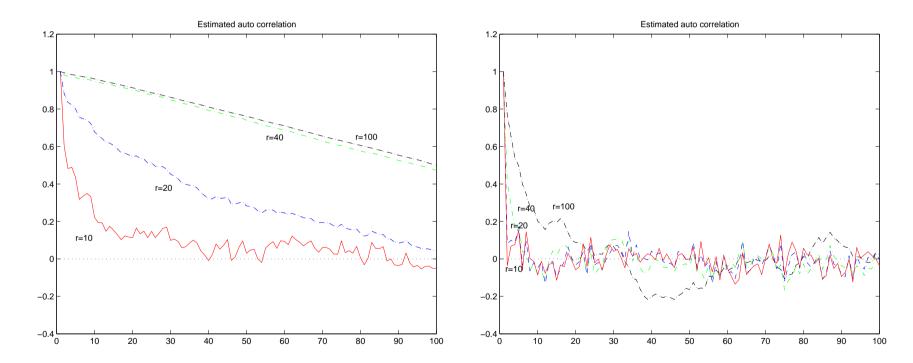
Buffer=1, r=100

Buffer=2, r=100

Buffer=10, r=100

Does it work?

Estimated auto-correlation function at pixel (48, 48). Left: Block Gibbs without buffers Right: With buffer five

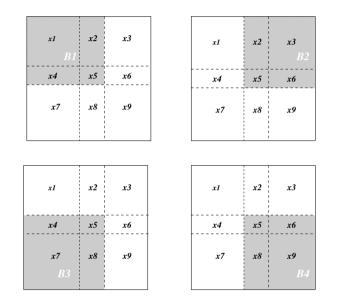


Transition probability

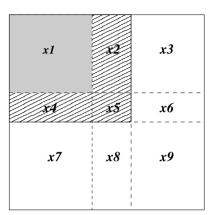
Hard to calculate the transition probability:

Transition probability

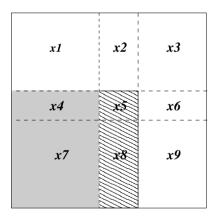
Hard to calculate the transition probability:



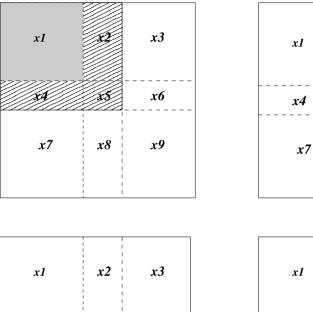
$$q(x|x') = \int [\pi_1(x'_1, x_2^{B1}, x_4^{B1}, x_5^{B1}|x_3, x_6, x_7, x_8, x_9) \\ \pi_2(x'_2, x'_3, x_5^{B2}, x_6^{B2}|x'_1, x_4^{B1}, x_7, x_8, x_9) \\ \pi_3(x'_4, x_5^{B3}, x'_7, x_8^{B3}|x'_1, x'_2, x'_3, x_6^{B2}, x_9) \\ \pi_4(x'_5, x'_6, x'_8, x'_9|x'_1, x'_2, x'_3, x'_4, x'_7)] dx_2^{B1} dx_4^{B1} dx_5^{B1} dx_5^{B2} dx_5^{B3} dx_6^{B2} dx_8^{B3} dx_8^{B3}$$



xI	x2	x3
x4))))	xo
x7	x8	x9

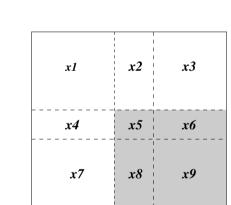


x2	x3
x5	x6
x8	x9
	x5



x6

x9



x2

x8

x3

x9

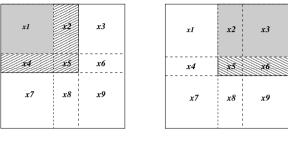
Given x^0

for
$$i = 0 : (niter - 1)$$

• Sample $(x_1^{i+1}) \sim \pi(x_1 | x_3^i, x_6^i, x_7^i, x_8^i, x_9^i)$

x4

*x*7

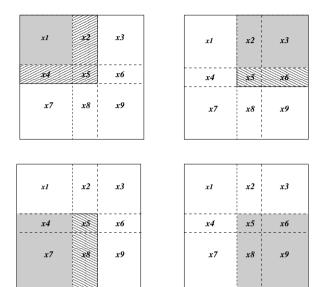


xI	x2	x3	x1	x2	x3
x4	25	хб	x4	x5	хб
x7	x8	x9	x7	x8	x9

Given x^0

for
$$i = 0 : (niter - 1)$$

- Sample $(x_1^{i+1}) \sim \pi(x_1 | x_3^i, x_6^i, x_7^i, x_8^i, x_9^i)$
- Sample $(x_2^{i+1}, x_3^{i+1}) \sim \pi(x_2, x_3 | x_1^{i+1}, x_4^i, x_7^i, x_8^i, x_9^i)$
- Sample $(x_4^{i+1}, x_7^{i+1}) \sim \pi(x_4, x_7 | x_1^{i+1}, x_2^{i+1}, x_3^{i+1}, x_6^i, x_9^i)$
 - Sample $(x_5^{i+1}, x_6^{i+1}, x_8^{i+1}, x_9^{i+1}) \sim \pi(x_5, x_6, x_8, x_9 | x_1^{i+1}, x_2^{i+1}, x_3^{i+1}, x_4^{i+1}, x_7^{i+1})$
- Return $((x_1^1, x_2^1, \dots, x_9^1), (x_1^2, x_2^2, \dots, x_9^2), \dots, (x_1^{niter}, x_2^{niter}, \dots, x_9^{niter}))$



Transition probability:

$$q(x|x') = \pi(x'_1|x_3, x_6, x_7, x_8, x_9)$$

$$\pi(x'_2, x'_3|x'_1, x_4, x_7, x_8, x_9)$$

$$\pi(x'_4, x'_7|x'_1, x'_2, x'_3, x_6, x_9)$$

$$\pi(x'_5, x'_6, x'_8, x'_9|x'_1, x'_2, x'_3, x'_4, x'_7)$$

Partially conditional blocks approximation Transition probability:

$$q(x|x') = \pi(x'_1|x_3, x_6, x_7, x_8, x_9)$$

$$\pi(x'_2, x'_3|x'_1, x_4, x_7, x_8, x_9)$$

$$\pi(x'_4, x'_7|x'_1, x'_2, x'_3, x_6, x_9)$$

$$\pi(x'_5, x'_6, x'_8, x'_9|x'_1, x'_2, x'_3, x'_4, x'_7)$$

Can use that:

$$\pi(a|c) = \frac{\pi(a,b|c)}{\pi(b|a,c)}$$

for any b

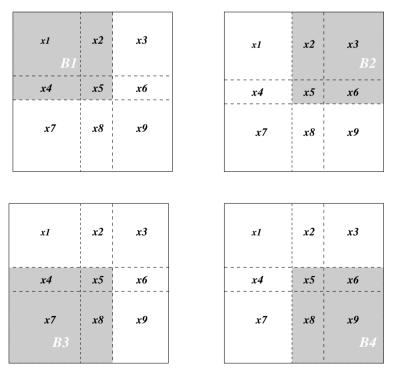
Opposite reversal

A M-H proposal constructed by Gibbs steps doesn't give acceptance probability 1.

Opposite reversal

- A M-H proposal constructed by Gibbs steps doesn't give acceptance probability 1.
- Sample first a direction $i = \{0, 1\}$
 - if i == 0 use $q_0: B_1 \to B_2 \to B_3 \to B_4$

• if i == 1 use $q_1 : B_4 \to B_3 \to B_2 \to B_1$



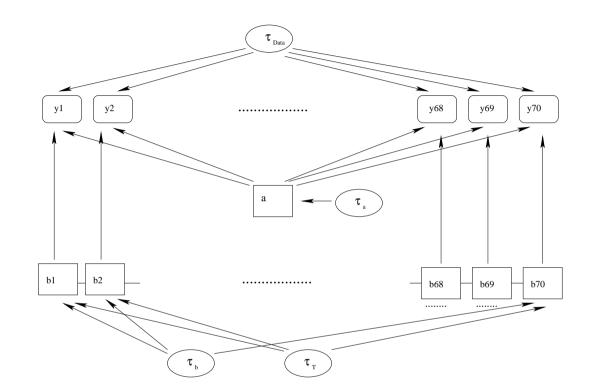
Opposite reversal

- A M-H proposal constructed by Gibbs steps doesn't give acceptance probability 1.
- Sample first a direction $i = \{0, 1\}$
 - if i == 0 use $q_0: B_1 \to B_2 \to B_3 \to B_4$
 - if i == 1 use $q_1 : B_4 \to B_3 \to B_2 \to B_1$
- Use acceptance probability (Tjelmeland & Hegstad, 2002)

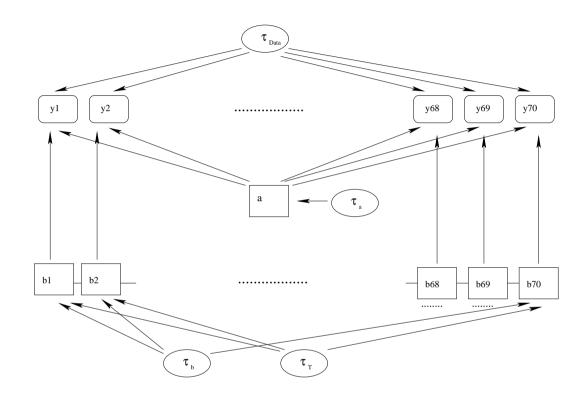
$$\alpha_{i,1-i}(y|x) = \min\left\{1, \frac{\pi(x')q_{1-i}(x|x')}{\pi(x)q_i(x'|x)}\right\}$$

• This gives $\alpha = 1$ for overlapping block Gibbs proposal, but generally not for a partial conditioning sampler

DAG fMRI



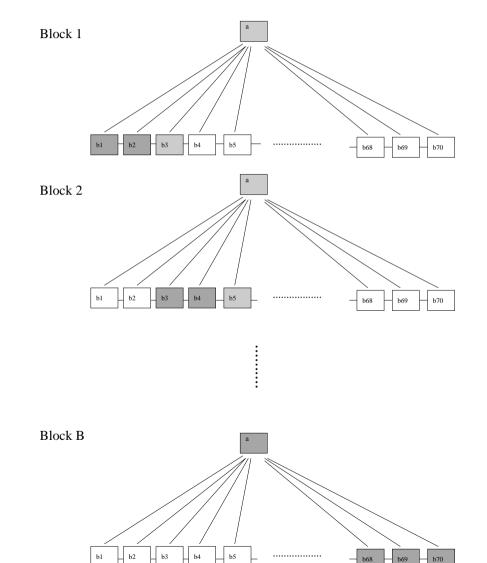
DAG fMRI



Dimension (a, b) full problem 356 775.
Dimension (a, b) reduced problem 111 825.

Solution fMRI

Sampling scheme:



b68

Algorithm

- Given θ^0 and x^0
- **9** for j = 0: (*niter* 1) *niter* = 20000
 - Sample $\theta^{new} \sim q(\theta|\theta^j)$ Independent random walk, τ_{Data} estimated beforehand

Algorithm

- **Given** θ^0 and x^0
- for j = 0 : (niter 1)
 - $\textbf{Sample } \theta^{new} \sim q(\theta|\theta^j)$
 - Sample *i*: P(i = 0) = P(i = 1) = 0.5.

■ Sample from overlapping block Gibbs proposal $x^{new} \sim q_i(x|x^{old}, \theta^{new})$

- Each block: a and five b_t .
- Overlap: a and two b_t .

Algorithm

- Given θ^0 and x^0
- for j = 0 : (niter 1)
 - $\textbf{Sample } \theta^{new} \sim q(\theta|\theta^j)$
 - Sample *i*: P(i = 0) = P(i = 1) = 0.5.
 - Sample from overlapping block Gibbs proposal $x^{new} \sim q_i(x|x^{old}, \theta^{new})$
 - Calculate acceptance probability

$$\alpha = \min(1, \frac{\pi(y|x^{new})\pi(x^{new}|\theta^{new})\pi(\theta^{new})q(\theta^j|\theta^{new})q_i(x^j|x^{new},\theta^j)}{\pi(y|x^j)\pi(x^j|\theta^j)\pi(\theta^j)q(\theta^{new}|\theta^j)q_{1-i}(x^{new}|x^j,\theta^{new})})$$

- Sample $u \sim \text{Unif}(0, 1)$
- $I if(u < \alpha)$

$$\begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \bullet \\ r^{j+1} = r^{new} \end{array}$$

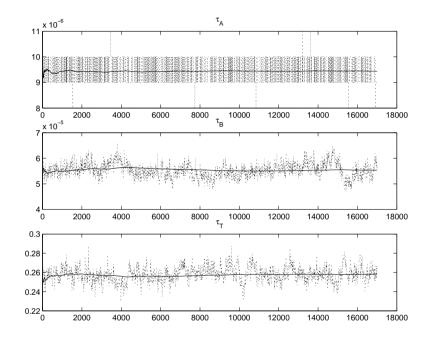
else

$$\begin{array}{l} \bullet \quad \theta^{j+1} = \theta^j \\ \bullet \quad x^{j+1} = x^j \end{array}$$

P Return $((\theta^1, x^1), (\theta^2, x^2), \dots, (\theta^n, x^n)).$

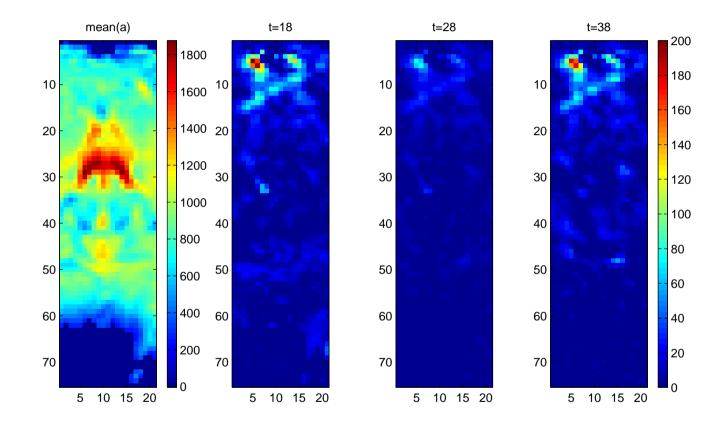
Results fMRI

Trace plots hyper-parameters:



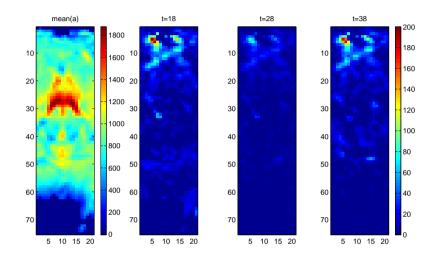
Results fMRI

Estimated mean a and b_{18} , b_{28} and b_{38} :

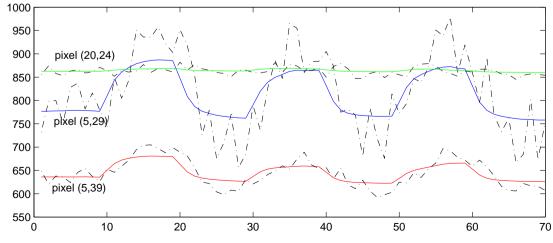


Results fMRI

Estimated mean a and b_{18} , b_{28} and b_{38} :



Estimate for some pixels in time:



Partially conditional approximated blocks approximations

- Can sample each block from an approximation to $\pi(x_B|x_{-B}, \theta^{new}, y).$
- Enable us to make inference from hidden GMRF models with non-Gaussian likelihood.
- Have used this for a time-space disease-mapping example with GMRF latent fi eld and Poisson likelihood.

How to choose block and buffer sizes

- Blocks: What is OK from a computational point of view.
- Buffers: Depends on the problem:
 - Larger spatial dependents \Rightarrow larger buffers
 - I.e. often depends on the dataset and the current value of θ^{new} .

Summary

Background:

- Latent spatial Markov models describe a large class of problems.
- One-block updating schemes important for mixing of Metropolis-Hastings samplers.

Challenge: Proposal for x, $q(x|x^{old}, \theta^{new})$

- Make an approximation from partially conditional blocks.
- Use knowledge from the dependence structure to set up blocks and buffers.
- Computational benefits because only smaller blocks are involved.

This presentation...

can be found on
 www.math.ntnu.no/~ingelins