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Outline
Introduction functional Magnetic Resonance
Imaging (fMRI) problem.

Latent spatial Markov models.

One-block Metropolis-Hastings algorithm.

Partially conditional blocks approximations

Results fMRI problem.

Closing remarks.
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fMRI
functional Magnetic Resonance Imaging -
Data from a visual stimulation experiment.

Stimulus: 8 Hz flickering checkerboard.

4 periods (a 30 sec.) rest, 3 periods stimulus.
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Cross section of the brain observed every 3rd sec.

Observe BOLD effects.
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fMRI
functional Magnetic Resonance Imaging -
Data from a visual stimulation experiment.
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fMRI
functional Magnetic Resonance Imaging -
Data from a visual stimulation experiment.
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Model fMRI
yit = ai + ztbit + εit

yit: Data in pixel i at time step t
i = 1, . . . , 75 × 67, t = 1, . . . 70

ai: Baseline image, pixel i, i = 1, . . . , 75 × 67

zt: Transformed stimulus at time step t,
t = 1, . . . 70

bit: Activation effect of pixel i at time step t,
i = 1, . . . , 75 × 67, t = 1, . . . 70

εit: Measurement error of pixel i at time step t
i = 1, . . . , 75 × 67, t = 1, . . . 70
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Model specification

yit = ai + ztbit + εit

ε ∼ N(0, τDataI) → yit|a, b ∼ N(ai + ztbit, τData)
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Model specification

yit = ai + ztbit + εit

yit|a, b ∼ N(ai + ztbit, τData)

z; use estimate from similar studies

Partially conditional blocks approximations used in MCMC – p.5/25



N
T

N
U

Model specification

yit = ai + ztbit + εit

yit|a, b ∼ N(ai + ztbit, τData)

GMRF (Gaussian Markov random field) for a:

π(a) ∝ exp(−1
2
τA

∑

i
s
∼j

(ai − aj)
2)
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Posterior, x = (a, b) and θ = (τA, τB, τT , τData):

π(x, θ|y) ∝ π(y|x)π(x|θ)π(θ)
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Latent GMRF models used
Mutually independent likelihoods

π(x|θ) ∼ GMRF

θ

x4x3

x2x1

y1 y2

y3 y4
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Gaussian Markov random field
A GMRF x = (x1, x2, . . . , xn) is:

Multivariate Gaussian distributed

with a Markov property;
neighbourhood structure
xi and xj conditionally dependent only if they
are neighbours

Gives sparse precision matrix and computational
benefits.

All full conditional distribution are GMRFs, and
easy to sample from and evaluate.
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Metropolis-Hastings with one-
block updating scheme
One-block updating scheme: x and θ are updated
simultaneously.

θ

x4x3

x2x1

y1 y2

y3 y4

Given x0 and θ0

for j = 0 : (niter − 1)

Sample θnew ∼ q(θ|θj)

Sample xnew ∼ q(x|xj, θnew)

Calculate α and accept / reject
if(accept)

θj+1 = θnew and xj+1 = xnew

else
θj+1 = θj and xj+1 = xj

Return (x1, x2, . . . , xniter) and (θ1, θ2, . . . , θniter)

Challenge: To make a good and cheap proposal for x.

Partially conditional blocks approximations used in MCMC – p.8/25



N
T

N
U

Metropolis-Hastings with one-
block updating scheme

Given x0 and θ0

for j = 0 : (niter − 1)

Sample θnew ∼ q(θ|θj)

Sample xnew ∼ q(x|xj, θnew)

Calculate α and accept / reject
if(accept)

θj+1 = θnew and xj+1 = xnew

else
θj+1 = θj and xj+1 = xj

Return (x1, x2, . . . , xniter) and (θ1, θ2, . . . , θniter)

Challenge: To make a good and cheap proposal for x.

Partially conditional blocks approximations used in MCMC – p.8/25



N
T

N
U

Metropolis-Hastings with one-
block updating scheme

Given x0 and θ0

for j = 0 : (niter − 1)

Sample θnew ∼ q(θ|θj)

Sample xnew ∼ q(x|xj, θnew)

Calculate α and accept / reject
if(accept)

θj+1 = θnew and xj+1 = xnew

else
θj+1 = θj and xj+1 = xj

Return (x1, x2, . . . , xniter) and (θ1, θ2, . . . , θniter)

Challenge: To make a good and cheap proposal for x.

Partially conditional blocks approximations used in MCMC – p.8/25



N
T

N
U

Metropolis-Hastings with one-
block updating scheme

Given x0 and θ0

for j = 0 : (niter − 1)

Sample θnew ∼ q(θ|θj)

Sample xnew ∼ q(x|xj, θnew)

Calculate α and accept / reject
if(accept)

θj+1 = θnew and xj+1 = xnew

else
θj+1 = θj and xj+1 = xj

Return (x1, x2, . . . , xniter) and (θ1, θ2, . . . , θniter)

Challenge: To make a good and cheap proposal for x.

Partially conditional blocks approximations used in MCMC – p.8/25



N
T

N
U

Metropolis-Hastings with one-
block updating scheme

Given x0 and θ0

for j = 0 : (niter − 1)

Sample θnew ∼ q(θ|θj)

Sample xnew ∼ q(x|xj, θnew)

Calculate α and accept / reject
if(accept)

θj+1 = θnew and xj+1 = xnew

else
θj+1 = θj and xj+1 = xj

Return (x1, x2, . . . , xniter) and (θ1, θ2, . . . , θniter)

Challenge: To make a good and cheap proposal for x.

Partially conditional blocks approximations used in MCMC – p.8/25



N
T

N
U

Metropolis-Hastings with one-
block updating scheme

Given x0 and θ0

for j = 0 : (niter − 1)

Sample θnew ∼ q(θ|θj)

Sample xnew ∼ q(x|xj, θnew)

Calculate α and accept / reject
if(accept)

θj+1 = θnew and xj+1 = xnew

else
θj+1 = θj and xj+1 = xj

Return (x1, x2, . . . , xniter) and (θ1, θ2, . . . , θniter)

Challenge: To make a good and cheap proposal for x.
Partially conditional blocks approximations used in MCMC – p.8/25



N
T

N
U

Our setting
Gold: Want to construct a q(x|xold, θnew) that:

Produces nearly independent samples from
approximately π(x|y, θnew).
Is computationally feasible to sample from.

Constraint: Too expensive to sample from an
n-dim. distribution.

Here: Construct a proposal for x which we can
sample from and evaluate working only with
smaller blocks.

Partially conditional blocks approximations used in MCMC – p.9/25



N
T

N
U

Proposal from blocks
Can use one full scan of a Gibbs sampler as
q(x|xold, θnew).

Block Gibbs sampler used to get better
convergence.
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Traditional blocking
x: 100 × 100 GMRF, E(x) = 0 but x0 = 3

5 × 5 neighbourhood

A GMRF approximation to correlation function:

ρ(xi, xj) = exp(
−3d(xi, xj)

r
)
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Traditional blocking
Estimated autocorrelation:
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Estimated auto correlation

(5,5)

(48,48)
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Overlapping block Gibbs sampler
Idea: Let the blocks overlap.
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Overlapping block Gibbs sampler
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Overlapping block Gibbs sampler
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Does it work?
As previous example with r = {10, 20, 40, 100} and
buffer = {0, 1, 2, 5, 10}

Buffer=0, r=10

Buffer=1, r=10

Buffer=2, r=20Buffer=2, r=10

Buffer=5, r=10

Buffer=10, r=10

Exact sample, r=10

Buffer=0, r=20

Buffer=1, r=20

Buffer=5, r=20

Buffer=10, r=20

Exact sample, r=20 Exact sample, r=40

Buffer=0, r=40

Buffer=1, r=40

Buffer=2, r=40

Buffer=5, r=40

Buffer=10, r=40

Buffer=0, r=100

Buffer=1, r=100

Buffer=2, r=100

Buffer=5, r=100

Buffer=10, r=100

Exact sample, r=100
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Does it work?
Estimated auto-correlation function at pixel (48, 48).
Left: Block Gibbs without buffers
Right: With buffer five
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Transition probability
Hard to calculate the transition probability:
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Transition probability
Hard to calculate the transition probability:
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Partially conditional blocks ap-
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Opposite reversal
A M-H proposal constructed by Gibbs steps
doesn’t give acceptance probability 1.

Sample first a direction i = {0, 1}

if i == 0 use q0 : B1 → B2 → B3 → B4

if i == 1 use q1 : B4 → B3 → B2 → B1

Use acceptance probability (Tjelmeland &
Hegstad, 2002)

αi,1−i(y|x) = min
{

1,
π(x′)q1−i(x|x

′)

π(x)qi(x′|x)

}

This gives α = 1 for overlapping block Gibbs
proposal, but generally not for a partial
conditioning sampler
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}

This gives α = 1 for overlapping block Gibbs
proposal, but generally not for a partial
conditioning sampler
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Opposite reversal
A M-H proposal constructed by Gibbs steps
doesn’t give acceptance probability 1.

Sample first a direction i = {0, 1}

if i == 0 use q0 : B1 → B2 → B3 → B4

if i == 1 use q1 : B4 → B3 → B2 → B1

Use acceptance probability (Tjelmeland &
Hegstad, 2002)

αi,1−i(y|x) = min
{

1,
π(x′)q1−i(x|x

′)

π(x)qi(x′|x)

}

This gives α = 1 for overlapping block Gibbs
proposal, but generally not for a partial
conditioning sampler

Partially conditional blocks approximations used in MCMC – p.16/25



N
T

N
U

DAG fMRI
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Dimension (a, b) full problem 356 775.

Dimension (a, b) reduced problem 111 825.
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Solution fMRI
Sampling scheme:

Block 2
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Algorithm
Given θ0 and x0

for j = 0 : (niter − 1) niter = 20000

Sample θnew ∼ q(θ|θj) Independent random walk, τData estimated beforehand

Calculate acceptance probability

α = min(1,
π(y|xnew)π(xnew|θnew)π(θnew)q(θj |θnew)qi(x

j |xnew, θj)

π(y|xj)π(xj |θj)π(θj)q(θnew|θj)q1−i(xnew|xj , θnew)
)

Sample u ∼ Unif(0, 1)

if(u < α)

θj+1 = θnew

xj+1 = xnew

else

θj+1 = θj

xj+1 = xj

Return ((θ1, x1), (θ2, x2), . . . , (θn, xn)).
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Algorithm
Given θ0 and x0

for j = 0 : (niter − 1)

niter = 20000

Sample θnew ∼ q(θ|θj)

Sample i: P (i = 0) = P (i = 1) = 0.5.

Sample from overlapping block Gibbs proposal xnew ∼ qi(x|x
old, θnew)

Each block: a and five bt.

Overlap: a and two bt.

Calculate acceptance probability

α = min(1,
π(y|xnew)π(xnew|θnew)π(θnew)q(θj |θnew)qi(x

j |xnew, θj)

π(y|xj)π(xj |θj)π(θj)q(θnew|θj)q1−i(xnew|xj , θnew)
)

Sample u ∼ Unif(0, 1)

if(u < α)

θj+1 = θnew
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else

θj+1 = θj

xj+1 = xj

Return ((θ1, x1), (θ2, x2), . . . , (θn, xn)).
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Algorithm
Given θ0 and x0

for j = 0 : (niter − 1)

niter = 20000

Sample θnew ∼ q(θ|θj)

Sample i: P (i = 0) = P (i = 1) = 0.5.

Sample from overlapping block Gibbs proposal xnew ∼ qi(x|x
old, θnew)

Calculate acceptance probability

α = min(1,
π(y|xnew)π(xnew|θnew)π(θnew)q(θj |θnew)qi(x

j |xnew, θj)

π(y|xj)π(xj |θj)π(θj)q(θnew|θj)q1−i(xnew|xj , θnew)
)

Sample u ∼ Unif(0, 1)

if(u < α)

θj+1 = θnew

xj+1 = xnew

else

θj+1 = θj

xj+1 = xj

Return ((θ1, x1), (θ2, x2), . . . , (θn, xn)).
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Results fMRI
Trace plots hyper-parameters:
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Results fMRI
Estimated mean a and b18, b28 and b38:

t=28
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Results fMRI
Estimated mean a and b18, b28 and b38:

t=28
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Estimate for some pixels in time:
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Partially conditional approximated
blocks approximations

Can sample each block from an approximation to
π(xB|x−B, θnew, y).

Enable us to make inference from hidden GMRF
models with non-Gaussian likelihood.

Have used this for a time-space disease-mapping
example with GMRF latent field and Poisson
likelihood.
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How to choose block and buffer
sizes

Blocks: What is OK from a computational point
of view.

Buffers: Depends on the problem:
Larger spatial dependents ⇒ larger buffers
I.e. often depends on the dataset and the
current value of θnew.
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Summary
Background:

Latent spatial Markov models describe a large
class of problems.

One-block updating schemes important for
mixing of Metropolis-Hastings samplers.

Challenge: Proposal for x, q(x|xold, θnew)

Make an approximation from partially
conditional blocks.

Use knowledge from the dependence structure to
set up blocks and buffers.

Computational benefits because only smaller
blocks are involved.
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This presentation...

can be found on
www.math.ntnu.no/˜ingelins
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