Quantitative Genetics, House Sparrows and a Multivariate Gaussian Markov Random Field Model

Ingelin Steinsland & Henrik Jensen

ingelins@math.ntnu.no

Norwegian University of Science and Technology

Quantitative Genetics

- Quantitative genetics is the study of quantitative characters. It is based on the assumption that such characters are determined by genes (...)
- Trait = Genetic + environmental effects.
- Much used in animal and plant breeding.
- In this study:
 - Wild life population
 - Several traits simultaneously.

House Sparrows

Multivariate Gaussian Markov Random Field Model (MGMRF)

Multivariate Gaussian Markov Random Field Model Multivariate Gaussian Markov Random Field Model (MGMRF)

• Multivariate Gaussian Model, $x \sim N(\mu, \Sigma)$

Multivariate Gaussian Markov Multivariate Gaussian Markov Random Field

Model (MGMRF)

Conditional independence structure

• Gives non-zero structure of $Q = \Sigma^{-1}$.

Multivariate Gaussian Gaussian Markov Random Field Model Multivariate Gaussian Markov Random Field Model (MGMRF)

 Each node is multivariate Gaussian (without Markov property)

Outline

- Data
- Biological motivation
- Model
- Gibbs sampler
- Fast sampling of GMRF
- Results
- Summary and further work

Data, islands

 Most house sparrows of five islands on Helgeland, off the coast of Northern Norway, are registered since 1993.

Data, islands

 Most house sparrows of five islands on Helgeland, off the coast of Northern Norway, are registered since 1993.

Hestmannøy

Data Collection

- Almost all fledglings are marked and blood sample collected in the nest.
- Most of the population is caught with nets during the summer and morphological traits are collected.

Morphological data

Traits measured for both sexes:

- Tarsus length (t)
- Wing length (w)
- Bill depth (bd)
- Bill length (bl)
- Body mass (bm)

Morphological data

For males only:

- Total badge size (tb)
- Visual badge size (vb)

Morphological data

- Tarsus length (t)
- Wing length (w)
- Bill depth (bd)
- Bill length (bl)
- Body mass (bm)
- Total badge size (tb), missing for all females
- Visual badge size (vb), missing for all females

Pedigree data

■ Blood samples taken in nest \Rightarrow DNA \Rightarrow Pedigree

Pedigree data

■ Blood samples taken in nest \Rightarrow DNA \Rightarrow Pedigree

Summary Data

- 2563 birds in the pedigree (from 1993 1999)
- 385 with measured traits as one year olds.
 - 194 males
 - 191 females
- Have 7 traits for adult birds.
 - There are missing data, e.g. females do not have badge.
- Sex, hatch year and island is known for all the birds.

Biological motivation

- From Kruuk et al (2002), Evolution Antler size in red deer: Heritability and selection, but no evolution
- One hypotheses: Genetic correlation between a given trait and other traits under selection will constrain the direction and pace of any evolutionary change
- Speed and direction of evolution.
- Important for ability to respond to environmental changes, e.g. climate changes.

Model, one bird

For bird i (i = 1, ..., 385):

observed traits =fixed +genetic +environmental $y_i = \beta_i + u_i + \epsilon_i$

- y_i : observations (traits), $y_i = (y_l, y_w, y_{bd}, y_{bl}, y_{bm}, y_{tb}, y_{vb})_i^T$
- β_i : "fixed effects" (sex, hatch year and island), $\beta \sim N(0, \sigma_{\beta}^2 I)$
- u_i : genetic effects, $u_i \sim N(0, \Sigma_u)$
- ϵ_i : Environmental effects: $\epsilon_i \sim N(0, \Sigma_{\epsilon})$
- Conjugate prior for $\sum_{\text{Genericus}, \text{House Sparrows and a Multivariate Gaussian Markov Random Field Model p.12/2:}$

Animal model, for the population

$$y = X\beta + Zu + \epsilon = W\binom{u}{\beta} + \epsilon$$

•
$$y = (y_1, y_2, \dots, y_{mdata})^T$$

- X and Z: incidence matrices, $W = (Z, X)^T$.
- *u*: genetic effect, $u = (u_1, u_2, \dots, u_{nind})$. $u \sim N(0, \Sigma_u \otimes A)$
- A: relationship matrix
- ϵ : environmental effect $\epsilon \sim N(0, \Sigma_{\epsilon} \otimes I)$

• $A_{ij} = 2\theta_{ij}, \theta_{ij}$: coefficient of coancestry.

• $A_{ij} = 2\theta_{ij}, \theta_{ij}$: coefficient of coancestry.

- Identical by descent: Genes that are direct descendents of a specified gene carried in some ancestral individual.
- Assume genes drawn randomly from two individuals (one gene from each).
- θ_{ij} : the probability that these two genes are identical by descent.

- $A_{ij} = 2\theta_{ij}, \theta_{ij}$: coefficient of coancestry.
- A is nearly a full matrix.

- $A_{ij} = 2\theta_{ij}, \theta_{ij}$: coefficient of coancestry.
- Pedigree = DAG (Directed Acyclic Graph)

- $A_{ij} = 2\theta_{ij}, \theta_{ij}$: coefficient of coancestry.
- Pedigree = DAG (Directed Acyclic Graph)
- Structure of A^{-1} from moralising the pedigree

- $A_{ij} = 2\theta_{ij}, \theta_{ij}$: coefficient of coancestry.
- Pedigree = DAG (Directed Acyclic Graph)
- Structure of A^{-1} from moralising the pedigree

 $\Rightarrow A^{-1}$ sparse.

Constraints etc.

● For all but one fixed effect (f =hatch year and island), for all traits:

$$\sum_{l=1}^{Nlevel} \beta_{flt}$$

• For the breeding values, for all traits:

$$\sum_{i=1}^{N} u_{it} = 0$$

• For fixed effect sex: $\beta_{female,vb} = \beta_{female,tb} = 0.$

Parameters of interest

- $u, \beta, \Sigma_u \text{ and } \Sigma_\epsilon$
- Heritability; $h_j = \frac{\sigma_{uj}^2}{\sigma_{uj}^2 + \sigma_{\epsilon j}^2}$, $j \in \{t, w, bd, bl, bm, vb, tb\}$

Gibbs sampler

Algorithm:

- For each iteration
 - 1. Sample from $\pi(\beta, u, y_{miss} | y_{obs}, \Sigma_u, \Sigma_{\epsilon})$ of dimension $\approx 20000!$
 - 2. Sample from $\pi(\Sigma_u, \Sigma_{\epsilon}|y, u, \beta)$

Blocking important for mixing

Gibbs sampler

Algorithm:

- For each iteration
 - 1. Sample from $\pi(\beta, u, y_{miss} | y_{obs}, \Sigma_u, \Sigma_{\epsilon})$ of dimension $\approx 20000!$
 - 2. Sample from $\pi(\Sigma_u, \Sigma_{\epsilon}|y, u, \beta)$

Blocking important for mixing Conditional distributions

- $\beta, u, y_{miss} | y_{obs}, \Sigma_u, \Sigma_e \sim MGMRF$, a multivariate Gaussian Markov Random Field.
- $\Sigma_u, \Sigma_\epsilon | y, \beta, u \sim \text{Inverted Wishart}$

Gibbs sampler

Algorithm:

- For each iteration
 - 1. Sample from $\pi(\beta, u, y_{miss} | y_{obs}, \Sigma_u, \Sigma_{\epsilon})$ of dimension $\approx 20000!$
 - 2. Sample from $\pi(\Sigma_u, \Sigma_{\epsilon}|y, u, \beta)$

Blocking important for mixing Conditional distributions

- $\beta, u, y_{miss} | y_{obs}, \Sigma_u, \Sigma_e \sim MGMRF$, a multivariate Gaussian Markov Random Field.
- $\Sigma_u, \Sigma_\epsilon | y, \beta, u \sim \text{Inverted Wishart}$
- Need to sample from a large MGMRF (structure given by A^{-1}).

Fast sampling of GMRF

- Want to sample $x \sim N(0, Q^{-1})$.
- Find Choleskey factor; $Q = LL^T$, and sample $z \sim N(0, I)$. Solve $L^T x = z$.
- Complexity for general multivariate problem $\mathcal{O}(n^3)$.
- Sparse $Q \Rightarrow$ cheaper calculations.

Reordering

Reorder elements in Q to get sparse L.

Original Q

Reordered Q Choleskey factor

- Complexity $< \mathcal{O}(n^{1.5})$
- For constraints $\mathcal{O}(k^3)$, k: no. of constraints.
- Have used GMRFLib.

Results, MCMC

Trace-plots 1000 iterations:

 $Quantitative \ Genetics, \ House \ Sparrows \ and \ a \ Multivariate \ Gaussian \ Markov \ Random \ Field \ Model - p. 20/25$

Results, MCMC

Trace-plots 10000 iterations:

Trace plot genetic covariance visual badge size and body mass 0.5 0 -0.5 -1 -1.5 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

 $Quantitative \ Genetics, \ House \ Sparrows \ and \ a \ Multivariate \ Gaussian \ Markov \ Random \ Field \ Model - p. 20/25$

Results, MCMC

Trace-plots 225000 iterations:

Heritability estimates

Correlation estimates

Genetic correlation

Correlation estimates

Genetic correlation

Correlation estimates

Summary

- Animal model of multiple traits = MGMRF model.
- Use a Gibbs sampler with two blocks
- Because of the sparse structure the pedigree impose, sampling from a MGMRF of dimension 20000 is fast.

What's new

- Statistics:
 - Sampling of MGMRF (with constraints) in one block.
- Biology:
 - Bayesian approach for animal model for wild life population.
 - Bayesian approach for animal model with multiple traits.

Further work

- Near future
 - One-block Metropolis-Hasting (Σ_u and Σ_ϵ together with u, β and y_{miss}).
 - Use data until 2004
 - Publish
- More serious extensions
 - Include life-history traits in the model.
 - Selection on breeding values?
 - Include environmental variables (e.g. weather) \Rightarrow model selection.
 - Selection studies.