

Bayesian Inference of Multiple-Traits in a House Sparrow Population using the Animal Model

Ingelin Steinsland & Henrik Jensen Norwegian University of Science and Technology, Trondheim, Norway

Why Bayesian?

• Can easily access uncertainty for all quantities of interest, e.g. for heritability and generic correlation estimates as well as response to selection.

For the population:

 $y = X\beta + Zu + \epsilon = W\binom{u}{\beta} + \epsilon$

• X and Z: incidence matrices, $W = (Z, X)^T$.

Results

PS: This is ongoing work, the software is still tested

• The Gibbs sampler ran for 55000 iterations

• Uncertainty of estimated parameters are considered in the further analysis.

Hestmannøy (one of the study islands)

Data

- Most house sparrows of six islands off the coast of Northern Norway are ringed and measuered since 1993.
- Blood samples taken \Rightarrow Genotyping of 9 microsatalites \Rightarrow Parenthood analysis \Rightarrow Pedigree
- Traits measured on adult birds; tarsus length, wing length, bill depth, bill length, body mass, total badge and visual badge.

- u: genetic effect $u \sim N(0, \Sigma_u \otimes A)$
- A: genetic covariance matrix
 Structure of A⁻¹ from moralising the pedigree ⇒ A⁻¹ sparse.
- ϵ : environmental effect $\epsilon \sim N(0, \Sigma_{\epsilon} \otimes I)$

Constraints:

• For all but one fixed effect (f =hatch year and sex), for all traits t:

$$\sum_{l=1}^{Nlevel} \beta_{flt} = 0$$

• For the breeding values, for all traits:

$$\sum_{i=1}^{N} u_{it} = 0$$

- Missing data: Females do not have a badge + some other missing trait values.
- There are 3572 birds in the pedigree, of these 1004 have (some) adult traits measurements.
- For (almost) all birds with data *sex*, *hatch year* and *hatch island* are known.

The Animal Model For bird i (i = 1, ..., 1004):

Of interest:

Genetic and environmental covariance matrices (Σ_u and Σ_ε), fixed effects (β) and/or individual breeding values (u_i).
Heritability; h²_j = σ²_{uj}/σ²_{ui}+σ²_{ci}.

Full conditional distributions:

β, u, y_{miss} | y_{obs}, Σ_u, Σ_ε ~ MGMRF, a multivariate Gaussian Markov Random Field with constraints.
Σ_u, Σ_ε | y, β, u ~ Inverted Wishart (if no constraints)

Gibbs sampler

yellow) and environmental correlation (Σ_{ϵ} , red).

- All environmental correlation estimates are positive.
- Genetic correlation estimates for traits with low heritability (body mass) and/or many missing data (badges) are uncertain.

Summary

- Animal model of multiple traits = MGMRF model.
- Use a Gibbs sampler with only two blocks.
- Able to find uncertainty in heritability and genetic correlation
- Can handle constraints, e.g. in "fixed effects".

observed traits =fixed +genetic +environmental $y_i = \beta_i + u_i + \epsilon_i$

y_i: observations (traits), y_i = (y_{tarsus}, y_{wing},...)_i
β_i: "fixed effects" (sex, hatch year and hatch island), β ~ N(0, σ²_βI)

• u_i : genetic effects, $u_i \sim N(0, \Sigma_u)$

• ϵ_i : Environmental effects: $\epsilon_i \sim N(0, \Sigma_{\epsilon})$

• Conjugate prior for the genetic and environmental covariance matrices Σ_u and Σ_{ϵ} (inverted Wishart).

Use a Gibbs sampler with two blocks for making inference.

Algorithm

• For each iteration

 Sample (β, u, y_{miss}) of dimension 25000!
 Sample (Σ_u, Σ_ϵ) (Metropolis-Hastings step because of constraints)

Step 1 is the challenge:

• Sparse $A^{-1} \Rightarrow$ cheaper calculations. • Complexity $< \mathcal{O}(n^{1.5})$, use GMRFLib.

Further work

• Extend methodology to make inference about response to selection with uncertainty.

