
Part 2: Point Processes

This week: Examples
Definitions + 3.4.1
More examples and 3.4.2 Spatial statistical
dependency

Next week: Simulations + more models (3.4.3 + revisit ++).
Estimation

Extra text book: Statistical Analysis and Modelling of Spatial Point
Patterns by Janine Illian, Antti Penttinen, Helga Stoyan, Dietrich
Stoyan (2008)

Where and when
Tuesdays: room 734 Central Building 2 (February 14, NOT
March 7 and 14, April 6)
Thursdays: room 743, Central Building 2 (February 9, NOT
16, but March 9, 16, April 6)
Friday: room 656, February 17, March 10 and 17
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http://onlinelibrary.wiley.com/book/10.1002/9780470725160
http://onlinelibrary.wiley.com/book/10.1002/9780470725160


Spatial Point Processe (SPP)

From Cressie and Wikle:

and we only consider:
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Homogenous Poisson point process (HPPP)

Sampling from Poisson point process

Trees in 1km × 1km domain, with intensity λ0 = 15trees/km2

Sample m ∼ Pos(15)
for i = 1 : m

sample location randomly in domain {si}
end
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First order intensity
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Estimation of intensity

We often want to estimate the λ(s) from data (points).
Seals (from log-Gaussian Cox model):
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Kernel estimation of intensity
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Dependency

from Illian et al 2008:
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2nd order intensity and Pair-correlation function

2nd order intensity

λ2(s, x) = lim
|ds|→0,|dx |→0

E (Z (ds)Z (dx))

|dx ||dy |

Pair correlation function

g(s, x) =
λ2(x , s)

λ(s)λ(x)

For HPPP: λ2(s, x) = λ(s)λ(x) and g(s, x) = 1
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Stationarity (from f3.pdf)

Second order (weakly) stationary

The random field Y (s) for s ∈ D is second order stationary if
E (Y (s)) = µ for all s ∈ D

Cov(Y (s + h),Y (s)) = CY (h) for all s, s + h ∈ D

I.e. the covariance only depends on the vector difference
between the locations.

Strong stationarity

Let F (Y (s1),Y (s2), . . . ,Y (sn)) be the cdf of
Y (s1),Y (s2), . . . ,Y (sn). The random field Y (s) is strongly
stationary if F (Y (s1),Y (s2), . . . ,Y (sn)) =
F (Y (s1 + h),Y (s2 + h), . . . ,Y (sn + h)) for all si and si + h ∈ D

General: Strong stationarity ⇒ second order stationarity.
For GRF: Strong stationarity ⇔ second order stationarity
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Isotropy (from f3.pdf)

A subclass of weakly stationary covariance functions are:

Isotropic covaraince function
A covariance function is isotropic if it only depends on the distance
between the locations:

CY (s, s + h) = CY (‖h‖)

Not isotropic = anisotropic
The exponential covariance function is isotropic.
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Example: Gold particles

From Illian et al (2008)
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Pair-correlation function for gold particles
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K-function (left) subadult longleaf pines
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L-function (left) adult longleaf pine
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L-function gold particles
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Hierachical statistical models (HM)

Data model: [Z |Y , θ]
Process model: [Y |θ]
Parameter model: [θ]
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