Part 1: Geostatistical processes

Last week: @ How to model spatial continuous processes.
e Hierarchical models
o Gaussian Random Field (GRF)
o Covariance functions (and variograms)
This week: @ Predictors for Y|Z (assume Z known) (Tuesday)
e Estimation of covariance function (parameters 6)
/ variogram.
e Simulations + more models.

Today: e Revisit our daily precipitation modeling

challenge.
e Evaluation
e Simulations / computational issues
e Empirical variogram
@ Understanding models and splines
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Hierachical statistical models (HM) for Mountain

temperature

Temperature:
[Z]Y, 0] Observations given true temperature:
Independent Z(s;) = N(Y(s;),o?)

Process model: [Y|d] Distribution for temperature.
Y (s) = Bo + B1h(s) + 6(8) where § ~ GRF with
E(5) = 0 and covariance function Cy(si, s»)

Parameter model: [f] Prior for parameters. [0] = [¢2][3][Cy ()].

@ h(s) is elevation (meters above see level)
o Can write as matrices: Y(s) = X with X = [1, h(s)]” and
B = [Bo. ]

January 19, 2017, Ingelin Steinsland TMA 4250:Geostatistical models



Modeling challenge: Daily precipitation

SeNorge

@ Suggest a spatial HM for daily precipitation?

@ What model/method/covariates do you think is used at
SeNorge? Why?

© How would you fit your model (make inference)?

@ How would you evaluate your model?
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http://www.senorge.no/index.html?p=senorgeny&st=weather

What is used for interpolation for precipitation at SeNorge?

New Routines for Gridding of Temperature and Precipitation
Observations for “seNorge.no”

For the spatial interpolation of precipitation, the method of
triangulation is used. Moreover, gridded precipitation values are
corrected for the altitude of the respective seNorge grid point, using
a vertical precipitation gradient of 10% per 100 m height difference
below an altitude of 1000 m above sea level as well as a gradient of
5% per 100 m height difference above an altitude of 1000 m above
sea level (Tveito et al., 2000).
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https://met.no/Forskning/Publikasjoner/metno_note_utgatt_serie/2008/filestore/NewRoutinesforGriddingofTemperature.pdf
https://met.no/Forskning/Publikasjoner/metno_note_utgatt_serie/2008/filestore/NewRoutinesforGriddingofTemperature.pdf

Evaluation / diagnostics (Sec 2.2.2)

@ Does our HM fit the data?

@ How good are the predictions?

Model fit: @ AIC, BIC, DIC, Bayes factors
@ Posterior predictive p-values

Predictions: e Validation (test and training set)

o Cross-validation (use the dataset many times
into training and test sets)

Do you see any challenges with the SeNorge case using
cross-validation?
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Inference about 6 and Y. Computational cost?

What are the expensive parts of evaluating MVN and finding
conditional MVN? (see MVN slide)

L
oy !
Computational cost? O(m?3) with m observations

@ Much research on how to decrease computational burden.

@ One appraoch is to work with sparse matrices
(SPDE-appraoch, or lattice models in part 2)
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Multivariate Normal distribution
Multivariate Normal(MVN) density

Y =(Y1, Ya,...,Y,) is MVN with expected value 1 and covarance
T, Y ~ MVN(u, X) if

1
(27)/2|x|1/2

Conditional MVN

Let Y = (Y1, Y2)7, = (u1, u2) 7 and

Y11 X
> = .
[Zzl 222]

exp(—(y — 1) TE"H(z - )

fly) = >

Then the [Y]_’Yz = a] ~ MVN(/L1|2721|2) with
@ fl1p = H1— Y12¥ 55 (a— p2) and
°© Xyp =131 — Y12Y 57 Y01
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Example: Temperature difference (pg 134-135)

Y(s) = x(s)'B + 8(s),

where for s = (s1,52)', X(8) = (1, 51,52, 53,53)', and B = (o, B1, B2, B, B)’
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Figure 46 () Same plot as Figure 4.5a: Temperature change (1990s minus 1980s); the 28 x 28
values represent “the truth.” (b) The 10 x 10 observations are obtained by subsampling “the truth”
and adding mean-zero Gaussian noise. (¢) Simple kriging predictor obtained from the missing and
noisy data in (b). (d) Kriging standard error comesponding to simple kriging; the pattern is expected
due o regular sampling in (b).
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Variogram and empirical variogram

@ An alternative to covariance functions measuring spatial
dependency.

Stationary variogram

() = S Var(Y(s + )~ Y(5))

computed from the data:
275(h) = ave{(Z(s;) — Z{sj)]z: Isi =s;lleT(h);i,j=1,...,m}, (4.16)

where T(h) is a tolerance region around A (such as A+ A, A small). The
empirical semivariogram is ¥5(-). For (4.16) to be an appropriate estimator

@ s an estimate of the variogram of Z.
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Example emprical variogram
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Figure 4.5 (a) Temperature change (1990s minus 1980s) in 28 x 28 grid cells over the Americas.
The values were originally produced by an NCAR model, and they represent “the truth.” (b) Empirical
and fitted (exponential model) semivariogram after the values in (a) were detrended by latitude and
longitude.
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What about this model?

144 FUNDAMENTALS OF SPATIAL RANDOM PROCESSES

Using appropriate conditional distributions, the following HM results in non-
Gaussian (but continuous) behavior for Z(.).

Data model: Conditional on ¢2, and for i = 1,...,m,

Z(si)|Y (si), a2 ~ ind. Gau(Y (s;), 02) .

Process model 1: Conditional on 8, n'?'(-), and py (-, +), Y(-) is a Gaussian
process with the following properties:

E(Y(-)) =x(-)’8, and we write cov(¥(u), ¥(v)) =
o(u)o (V)py(u, v).

Process model 2: Conditional on C,(-, ), o(:) is a log Gaussian process
with the following properties:
E(o(s)) =1, and we write cov(o(u),o(v)) =
exp(C,(u, v) — 1), where C,(-,-) is the covariance
function for w(-) = logo(:).

Notice that @(-) =logo(-) is a Gaussian process, and if we put
E(w(s)) = (—1/2)C,(s,s), s € D, then on the exponential scale the process
o(-) = exp(w(-)) does have mean 1, as specified in process model 2. Hence,
if the Gaussian process @(-) is chosen to have constant variance aj. then
E(w(s)) = (—1/2)a?, a constant.
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