Part 1: Geostatistical processes

Last week: @ How to model spatial continuous processes.
e Hierarchical models
o Gaussian Random Field (GRF)
o Covariance functions (and variograms)
This week: @ Predictors for Y|Z (assume Z known) (today)
e Estimation of covariance function (parameters 0)
/ variogram.
@ Simulations + other topics.
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2.1.4 Optimal Spatial Prediction

Today: Want to find predictor for process, i.e. \A/]Z,H.
Two approaches

Model based geostatistics: @ Make assumptions about model.
e Find posterior, [Y|Z,].
@ Optimal predictor under square loss is posterior
mean, E([Y]Z])

Kriging: @ Make assumptions about the predictor
@ Find optimal linear predictor

@ We assume that (some of) 6 is known.

@ Main focus on model based geostatistics (more kriging in
exercises)

@ When do these approaches meet?
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Hierachical statistical models (HM) for Mountain

Temperature:
[Z]Y, 0] Observations given true temperature:
Independent Z(s;) = N(Y(s;),o?)

Process model: [Y|6] Distribution for temperature.
Y (s) = Bo + B1h(s) + 6(0) where § ~ GRF with
E(6) = 0 and covariance function Cy(si,s2)

Parameter model: [f] Prior for parameters. [0] = [¢2][5][Cy()]-

@ h(s) is elevation (meters above see level)
o Can write as matrices: Y(s) = X3 with X = [1, h(s)]" and
B8 = [Bo, 51]"
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Gaussian Random Field

Gaussian Random Field (GRF)

The random field Y(s), s € D (f.ex. in R?) is a Gaussian Random

field if, for any n, and any set of locations s1, 55, ..., s,, all finite
collections (Y(s1), Y(s2),... Y(sn)) are multivariate Normal
distributed.

20

5 Wt 3
2
2 -l\ 1‘ 1
F = 0
B4 & -1
Do 2
w0 -3
ol :

T T I T

0 10 20 30

Covariance function: Cov(Y(s1), Y(s2)) = Cy(s1,s2)

January 17, 2017, Ingelin Steinsland TMA 4250: Introduction and GRF



Multivariate Normal distribution
Multivariate Normal(MVN) density

Y =(Y1, Ya,...,Y,) is MVN with expected value 1 and covarance
T, Y ~ MVN(u, X) if
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Conditional MVN

Let Y = (Y1,Y2)", = (p1,p2)" and
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Then the [Y1]Y2 = a] ~ MVN(p1p0, X1)2) with
1
© fyp =1 — 12255 (a — p2) and
—1
@ Yyp =211 — XXy ro




Example: Temperature difference (pg 134-135)

Y(s) = x(s)'B + 8(s),

where for s = (s1,52)', X(8) = (1, 51,52, 53,53)', and B = (o, B1, B2, B, B)’
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Figure 46 () Same plot as Figure 4.5a: Temperature change (1990s minus 1980s); the 28 x 28
values represent “the truth.” (b) The 10 x 10 observations are obtained by subsampling “the truth”
and adding mean-zero Gaussian noise. (¢) Simple kriging predictor obtained from the missing and
noisy data in (b). (d) Kriging standard error comesponding to simple kriging; the pattern is expected
due o regular sampling in (b).
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