
Part 1: Geostatistical processes

Last week: How to model spatial continuous processes.
Hierarchical models
Gaussian Random Field (GRF)
Covariance functions (and variograms)

This week: Predictors for Y |Z (assume Z known) (today)
Estimation of covariance function (parameters θ)
/ variogram.
Simulations + other topics.
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2.1.4 Optimal Spatial Prediction

Today: Want to find predictor for process, i.e. Ŷ |Z , θ.
Two approaches

Model based geostatistics: Make assumptions about model.
Find posterior, [Y |Z , ].
Optimal predictor under square loss is posterior
mean, E ([Y |Z ])

Kriging: Make assumptions about the predictor
Find optimal linear predictor

We assume that (some of) θ is known.
Main focus on model based geostatistics (more kriging in
exercises)
When do these approaches meet?
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Hierachical statistical models (HM) for Mountain

Temperature:

Data model: [Z |Y , θ] Observations given true temperature:
Independent Z (si ) = N(Y (si ), σ

2
ε )

Process model: [Y |θ] Distribution for temperature.
Y (s) = β0 + β1h(s) + δ(θ) where δ ∼ GRF with
E (δ) = 0 and covariance function CY (s1, s2)

Parameter model: [θ] Prior for parameters. [θ] = [σ2
ε ][β][CY ()].

h(s) is elevation (meters above see level)
Can write as matrices: Y (s) = Xβ with X = [1, h(s)]T and
β = [β0, β1]T
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Gaussian Random Field

Gaussian Random Field (GRF)

The random field Y (s), s ∈ D (f.ex. in R2) is a Gaussian Random
field if, for any n, and any set of locations s1, s2, . . . , sn, all finite
collections (Y (s1),Y (s2), . . .Y (sn)) are multivariate Normal
distributed.

Covariance function: Cov(Y (s1),Y (s2)) = CY (s1, s2)
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Multivariate Normal distribution

Multivariate Normal(MVN) density

Y = (Y1,Y2, . . . ,Yn) is MVN with expected value µ and covarance
Σ, Y ∼ MVN(µ,Σ) if

f (y) =
1√

((2π)n
exp(−1

2
(y − µ)TΣ−1(t − µ))

Conditional MVN

Let Y = (Y1,Y2)T , µ = (µ1, µ2)T and

Σ =

[
Σ11 Σ12
Σ21 Σ22

]
.

Then the [Y1|Y2 = a] ∼ MVN(µ1|2,Σ1|2) with

µ1|2 = µ1 − Σ12Σ−1
22 (a− µ2) and

Σ1|2 = Σ11 − Σ12Σ−1
22 Σ21
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Example: Temperature difference (pg 134-135)
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