
Hierachical statistical models (HM)

Data model: [Z |Y , θ]

Process model: [Y |θ]

Parameter model: [θ]

For precipitation (Thea):
Data model: [Z |Y , θ] Distribution for observations given true

precipitation Independent Z (si ) = N(Y (si ), σ
2
d)

Process model: [Y |θ] Distribution for precipitation.
Y (s) ∼ GRF (θp)

Parameter model: [θ] Prior for parameters. [θ] = [σ2
d ][θp]

Bayesian HM (BHM): θ considered random variable, given
prior
Empirical HM (EHM): θ considered fixed, but unknown
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Part 1: Geostatistical processes

We need a stochastic models for random variables that are defined
for a domain (in space) for the process model.
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Gaussian Random Field

Gaussian Random Field (GRF)

The random field Y (s), s ∈ D (f.ex. in R2) is a Gaussian Random
field if, for any n, and any set of locations s1, s2, . . . , sn, all finite
collections (Y (s1),Y (s2), . . .Y (sn)) are multivariate Normal
distributed.
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Covariance function

Need a way to specify the covariance matrix Σ for any set of
locations (s1, s2, . . . , sn)

Σ has to be positive (semi) definite.
Want locations close to have higher correlation that locations
further away.

One valid correlation function:

Exponential correlation function

Corr(Y (s1),Y (s2) = exp(−d(s1, s2)/θ1)

where d(s1, s2) is the (Euclidian) distance between s1 and s2.

Exponential covariance function :

C (Y (s1),Y (s2)) = σ2
1Corr(Y (s1),Y (s2))
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Exponential correlation function, θ = 2
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Examples samples from GRFs

θ1 = 0.5 and σ2
1 = 2 θ1 = 2 and σ2

1 = 2

θ1 = 10 and σ2
1 = 2 θ1 = 2 and σ2

1 = 4
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Annual precipitation in Southern Norway

Can this be a sample from a GRF (as previous page)?
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Today

Random Fields:
Stationary
Isotopic

Covariance functions:
Power exponential
Matern
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Stationarity

Second order (weakly) stationary

The random field Y (s) for s ∈ D is second order stationary if
E (Y (s)) = µ for all s ∈ D

Cov(Y (s + h),Y (s)) = CY (h) for all s, s + h ∈ D

I.e. the covariance only depends on the vector difference
between the locations.

Strong stationarity

Let F (Y (s1),Y (s2), . . . ,Y (sn)) be the cdf of
Y (s1),Y (s2), . . . ,Y (sn). The random field Y (s) is strongly
stationary if F (Y (s1),Y (s2), . . . ,Y (sn)) =
F (Y (s1 + h),Y (s2 + h), . . . ,Y (sn + h)) for all si and si + h ∈ D

General: Strong stationarity ⇒ second order stationarity.
For GRF: Strong stationarity ⇔ second order stationarity
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Isotropy

A subclass of weakly stationary covariance functions are:

Isotropic covaraince function
A covariance function is isotropic if it only depends on the distance
between the locations:

CY (s, s + h) = ‖h‖

Not isotropic = anisotropic
The exponential covariance function is isotropic.
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Correlation for 3 sites with two models
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Range and standard deviation

Elevation is used to model the spatial dependency:
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For predictions of Y (s)
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Variogram

An alternative to covariance functions measuring spatial
dependency.

Stationary variogram

γY (h) =
1
2
Var(Y (s + h)− Y (s))

Stationary covariance function ⇒ stationary variogram (pg
128-).
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Common covariance functions

d is distance
Power exponential: CY (d) = σ2

1 exp(−(d/θ1)θ2)

Matern: CY (d) = σ2
1(2ν−1Γ(ν))−1(d/θ1)νKν(d/θ1)

A Gaussian process with Matérn covariance has sample paths
that are ν − 1 times differentiable.
In Cressie & Wikle: ν → θ2

θ1: Range
θ2: Smoothness
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Two spatial processes Z(s) and Y(s)

For a while we have assumed
Known parameters, i.e. mean µ and covariance function / Σ

Perfect observations (observe Y (s)) ⇒ Y (s) = Z (s)

What if we do not have perfect observations?

Much of the discussion about HM and kriging is related to this.

January 13, 2017, Ingelin Steinsland TMA 4250: Introduction and GRF



Micro-scale variation

Note: Covariance functions (and variograms) in Chp 4.1 are
(often) written as:

CY (d) = σ2
0I (d = 0) + OurCY (d)

Microscale variation: σ2
0I (d = 0) is very small scale variation in

Y (s)

Nugget effect: σ2
0 + σ2

ε : Due to both microscale variation and
measurement uncertainty.

Covariance function: With microscale variation, when h→ 0:
Corr(Y (s),Y (s + h)) < 1 (see e.g. figure 4.2 and
4.3)
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Before Tuesday

Read 4.1.1 and 4.1.2
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