Hierachical statistical models (HM)

[Z]Y,0]
Process model: [Y6]
Parameter model: [6]
For precipitation (Thea):
[Z|Y, 6] Distribution for observations given true
precipitation Independent Z(s;) = N(Y(s;),03)
Process model: [Y|0] Distribution for precipitation.
Y (s) ~ GRF(6,)

Parameter model: [¢] Prior for parameters. [0] = [02][6),]

@ Bayesian HM (BHM): 6 considered random variable, given
prior
e Empirical HM (EHM): 6 considered fixed, but unknown
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Part 1: Geostatistical processes

We need a stochastic models for random variables that are defined
for a domain (in space) for the process model.
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Gaussian Random Field

Gaussian Random Field (GRF)

The random field Y(s), s € D (f.ex. in R?) is a Gaussian Random
field if, for any n, and any set of locations si, sy, ..., s,, all finite
collections (Y (s1), Y(s2), ... Y(sn)) are multivariate Normal
distributed.
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Covariance function

o Need a way to specify the covariance matrix X for any set of
locations (s1, 2, .-+ ,5n)

@ Y has to be positive (semi) definite.

@ Want locations close to have higher correlation that locations
further away.

One valid correlation function:

Exponential correlation function

Corr(Y(Sl), Y(S2) = eXp(—d(Sl,Sz)/Gl)

where d(s1, s2) is the (Euclidian) distance between s; and s,.

Exponential covariance function :

C(Y(s1),Y(s2)) = Jf Corr(Y(s1), Y(s2))
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Exponential correlation function, 8 = 2
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Examples samples from GRFs

61 = 0.5 and 07 =2 61 =2 and 03 =2
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Annual precipitation in Southern Norway

Can this be a sample from a GRF (as previous page)?

R. Ingebrigtsen et al. / Spatial Statistics 8 (2014) 20-38 23
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(a) Annual precipitation (m). (b) Smoothed elevation (km).

Fig. 1. The precipitation data are from the Norwegian Meteorological Institute and consist of observations from 233 weather
stations in southern Norway. The smoothed elevation model is based on GLOBE and computed on a triangulation of the domain.
The locations of the three weather stations Kvamskogen (4), Hemsedal (o), and Henefoss (00) are indicated on the elevation
map in (b). These stations will receive closer examination in Section 5.1. Also indicated on the map is Brekke (B) and @ygarden
(@), these two weather stations have, respectively, the maximum and minimum annual normal in Norway. The coordinate
reference system is UTM33 in km.
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Random Fields:
o Stationary
@ Isotopic
Covariance functions:
@ Power exponential

e Matern
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Stationarity
Second order (weakly) stationary

The random field Y(s) for s € D is second order stationary if
@ E(Y(s))=uforallse D
e Cov(Y(s+ h),Y(s)) = Cy(h) for all s,s +he D

@ l.e. the covariance only depends on the vector difference
between the locations.

Let F(Y(s1), Y(s2),--., Y(sn)) be the cdf of

Y(s1), Y(s2),--., Y(sn). The random field Y(s) is strongly
stationary if F(Y(s1), Y(s2),...,Y(sn)) =

F(Y(s1+h),Y(s2+ h),...,Y(sy + h)) for all s; and s; + he D

@ General: Strong stationarity = second order stationarity.
@ For GRF: Strong stationarity < second order stationarity
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A subclass of weakly stationary covariance functions are:

Isotropic covaraince function

A covariance function is isotropic if it only depends on the distance
between the locations:

Cy(s,s+h) = ||Al

@ Not isotropic = anisotropic

@ The exponential covariance function is isotropic.
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Correlation for 3 sites with two models
R. Ingebrigtsen et al. / Spatial Statistics 8 (2014) 20-38

Kvamskogen: stationary Hemsedal: stationary Henefoss: stationary

Kvamskogen: non-stationary Hemsedal: non-stationary Henefoss: non-stationa
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Range and standard deviation

Elevation is used to model the spatial dependency:
R. Ingebrigtsen et al. / Spatial Statistics 8 (2014) 20-38
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For predictions o

30 R. Ingebrigtsen et al. / Spatial Statistics 8 (2014) 20-38

mean: stationary mean: non-stationary

January 13, 2017, Ingelin Steinsland TMA 4250: Introduction and GRF



Variogram

@ An alternative to covariance functions measuring spatial
dependency.

Stationary variogram

Ty () = 3 Var(Y(s+ h) — ¥(5))

e Stationary covariance function = stationary variogram (pg
128-).
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Common covariance functions

d is distance
o Power exponential: Cy(d) = o2 exp(—(d/01)%)
Matern: Cy(d) = 05(2”_1r(u))_l(d/el)”K,,(d/Hl)
o A Gaussian process with Matérn covariance has sample paths

that are v — 1 times differentiable.
o In Cressie & Wikle: v — 05

f1: Range

0>: Smoothness
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https://en.wikipedia.org/wiki/Matern_covariance_function

Two spatial processes Z(s) and Y(s)

For a while we have assumed
e Known parameters, i.e. mean p and covariance function / ¥
@ Perfect observations (observe Y(s)) = Y(s) = Z(s)

What if we do not have perfect observations?

@ Much of the discussion about HM and kriging is related to this.

January 13, 2017, Ingelin Steinsland TMA 4250: Introduction and GRF



Micro-scale variation

Note: Covariance functions (and variograms) in Chp 4.1 are
(often) written as:

Cy(d) = 031(d = 0) + OurCy(d)

Microscale variation: 03/(d = 0) is very small scale variation in
Y(s)

Nugget effect: o3 + o2: Due to both microscale variation and
measurement uncertainty.

Covariance function: With microscale variation, when h — 0:
Corr(Y(s), Y(s+ h)) <1 (see e.g. figure 4.2 and
4.3)
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Before Tuesday

@ Read 4.1.1 and 4.1.2
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