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Examples of spatial staistics

Our data
Thea (Precipitation)
Torstein (Lithology)
Haakon (Seals in Scotland)
Avalanches in Sogn
Lightning strikes over Norway
Methylation
Doctor-prescription in France
Scots pine in Sweden
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Hierachical statistical models (HM)

Data model: [Z |Y , θ]

Process model: [Y |θ]

Parameter model: [θ]

For precipitation (Thea):
Data model: [Z |Y , θ] Distribution for observations given true

precipitation Independent Z (si ) = N(Y (si ), σ
2
d)

Process model: [Y |θ] Distribution for precipitation.
Y (s) ∼ GRF (θp)

Parameter model: [θ] Prior for parameters. [θ] = [σ2
d ][θp]

Bayesian HM (BHM): θ considered random variable, given
prior
Empirical HM (EHM): θ considered fixed, but unknown
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Inference

BHM: We want posterior distributions
[Y |Z ], process given data
[θ|Z ], parameters given data
[Y , θ|Z ]

How: MCMC (TMA4300, we will do)
For some models INLA (developed at NTNU)

EHM: We want posterior distributions
[Y |Z , θ̂], process given data

How? Estimate θ (θ̂) by
Maximum-likelihood (we will do)
Expectation-Maximalization (EM),
pseudo-likelihood,...
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Why do we want to do spatial statistics?

Want to predict for locations not observed. I.e.
[Y (s0)|Z (sobs)] (or [Z (s0)|Z (sobs)] )
Want to understand underlaying processes, i.e. [Y (s0)|Z (sobs)]
or [θ|Z (sobs)]

Want to account for spatial dependency (not independent
observations)
Want to use as proxy for ’lurking variables’ (Simpsons’s
paradox / Ecological fallacy)
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Simpsons paradox and The Ecological Fallacy

Success treatment of Kidney stones (pg 12)

For all surgery Open surgery: Success rate 78 %
Ultra sound: Success rate 83 %

For small stones: Open surgery: Success rate 93 %
Ultra sound: Success rate 87 %

For large stones: Open surgery: Success rate 73 %
Ultra sound: Success rate 69 %

Lurking variable: Patients kidney stone size
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The Ecological Fallacy

Foreigne born and litteracy in US, 1930s (pg 197)

At individual level: Correlation: -0.11
At state level: Correlation 0.53

Same as Simpsons’s paradox, due to change-of-support, also named
ecological bias
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Three parts:

Part 1: Geostatistical Processes (chapter 4.1)
Part 2: Spatial Point processes (chapter 4.3 ++)
Part 3: Lattice processes (chapter 4.2, focus on discrete

Markov random fields)
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Part 1: Gostatistical processes

We need a stochastic models for random variables that are defined
for a domain (in space) for the process model.
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Gaussian Random Field

Gaussian Random Field (GRF)

The random field Y (s), s ∈ D (f.ex. in R2) is a Gaussian Random
field if, for any n, and any set of locations s1, s2, . . . , sn, all finite
collections (Y (s1),Y (s2), . . .Y (sn)) are multivariate Normal
distributed.

From Wikipedia: A random field is a generalization of a stochastic
process such that the underlying parameter need no longer be a
simple real or integer valued "time", but can instead take values
that are multidimensional vectors, or points on some manifold.
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Multivariate Normal distribution

Multivariate Normal(MVN) density

Y = (Y1,Y2, . . . ,Yn) is MVN with expected value µ and covarance
Σ, Y ∼ MVN(µ,Σ) if

f (y) =
1√

((2π)n
exp(−1

2
(y − µ)TΣ−1(t − µ))

Conditional MVN

Let Y = (Y1,Y2)T , µ = (µ1, µ2)T and

Σ =

[
Σ11 Σ12
Σ21 Σ22

]
.

Then the [Y1|Y2 = a] ∼ MVN(µ1|2,Σ1|2) with

µ1|2 = µ1 − Σ12Σ−1
22 (a− µ2) and

Σ1|2 = Σ11 − Σ12Σ−1
22 Σ21
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Covariance function

Need a way to specify the covariance matrix Σ for any set of
locations (s1, s2, . . . , sn)

Σ has to be positive definite.
Want locations close to have higher correlation that locations
further away.

One valid correlation function:

Exponential correlation function

Corr(Y (s1),Y (s2) = exp(−d(s1, s2)/θ1)

where d(s1, s2) is the (Euclidian) distance between s1 and s2.

Exponential covariance function :

C (Y (s1),Y (s2)) = σ2
1Corr(Y (s1),Y (s2))
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Exponential correlation function, θ = 2
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Examples samples from GRFs

How are these different?
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Predictions

Now we assumes
Known parameters, i.e. mean µ and covariance function / Σ

Perfect observations (observe Y (s))

Example: Temperature outsid my home
Want to predict, with uncertainty, the temperature at location
s0, i.e. Y (s0).
Know the temperature at locations s1, s2, . . . sp.
How to predict? Hint: Conditional MVN
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Predictions, what design is best?

Want to predict at (10, 10) (black)
Can observe Y(s) at (5, 5), (4, 5) and (16, 15).
Which will you chose if you can chose 1 site?
Which will you chose if you can chose 2 site?
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Before Friday

Read stationary and isotropic (page 34)
Play with the code.
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