Course page: https://wiki.math.ntnu.no/tma4250/2017v/start

Examples of spatial staistics

- Our data
- Thea (Precipitation)
- Torstein (Lithology)
- Haakon (Seals in Scotland)
- Avalanches in Sogn
- Lightning strikes over Norway
- Methylation
- Doctor-prescription in France
- Scots pine in Sweden

- Data model: $[Z|Y, \theta]$
- Process model: $[Y|\theta]$
- Parameter model: $[\theta]$
- For precipitation (Thea):
- Data model: $[Z|Y, \theta]$ Distribution for observations given true precipitation Independent $Z(s_i) = N(Y(s_i), \sigma_d^2)$
- Process model: $[Y|\theta]$ Distribution for precipitation. $Y(s) \sim GRF(\theta_p)$

Parameter model: $[\theta]$ Prior for parameters. $[\theta] = [\sigma_d^2][\theta_p]$

- Bayesian HM (BHM): θ considered random variable, given prior
- Empirical HM (EHM): θ considered fixed, but unknown

BHM: We want posterior distributions

- [Y|Z], process given data
- $[\theta|Z]$, parameters given data
- $[Y, \theta|Z]$
- How: MCMC (TMA4300, we will do)
 - For some models INLA (developed at NTNU)
- EHM: We want posterior distributions
 - $[Y|Z, \hat{\theta}]$, process given data

How? Estimate θ ($\hat{\theta}$) by

- Maximum-likelihood (we will do)
- Expectation-Maximalization (EM), pseudo-likelihood,...

- Want to predict for locations not observed. I.e. $[Y(s_0)|Z(s_{obs})]$ (or $[Z(s_0)|Z(s_{obs})]$)
- Want to understand underlaying processes, i.e. $[Y(s_0)|Z(s_{obs})]$ or $[\theta|Z(s_{obs})]$
- Want to account for spatial dependency (not independent observations)
- Want to use as proxy for 'lurking variables' (Simpsons's paradox / Ecological fallacy)

Success treatment of	f Kidney stones ((pg 12)	
----------------------	-------------------	---------	--

- Open surgery: Success rate 78 %
 Ultra sound: Success rate 83 %
- For small stones:
 Open surgery: Success rate 93 %
 Ultra sound: Success rate 87 %
- For large stones: Open surgery: Success rate 73 %
 Ultra sound: Success rate 69 %

Lurking variable: Patients kidney stone size

Foreigne born and litteracy in US, 1930s (pg 197)

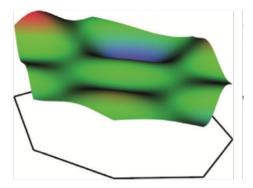
At individual level: Correlation: -0.11

At state level: Correlation 0.53

Same as *Simpsons's paradox*, due to *change-of-support*, also named *ecological bias*

- Part 1: Geostatistical Processes (chapter 4.1)
- Part 2: Spatial Point processes (chapter 4.3 ++)
- Part 3: Lattice processes (chapter 4.2, focus on discrete Markov random fields)

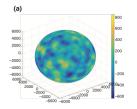
We need a stochastic models for random variables that are defined for a domain (in space) for the process model.



Gaussian Random Field (GRF)

The random field Y(s), $s \in D$ (f.ex. in \mathbb{R}^2) is a Gaussian Random field if, for any n, and any set of locations s_1, s_2, \ldots, s_n , all finite collections $(Y(s_1), Y(s_2), \ldots, Y(s_n))$ are multivariate Normal distributed.

From Wikipedia: A random field is a generalization of a stochastic process such that the underlying parameter need no longer be a simple real or integer valued "time", but can instead take values that are multidimensional vectors, or points on some manifold.



Multivariate Normal distribution

Multivariate Normal(MVN) density

 $Y = (Y_1, Y_2, \dots, Y_n)$ is MVN with expected value μ and covarance Σ , $Y \sim MVN(\mu, \Sigma)$ if

$$f(y) = \frac{1}{\sqrt{((2\pi)^n}} \exp(-\frac{1}{2}(y-\mu)^T \Sigma^{-1}(t-\mu))$$

Conditional MVN

Let
$$Y = (Y_1, Y_2)^T$$
, $\mu = (\mu_1, \mu_2)^T$ and

$$\begin{bmatrix} \Sigma_{11} & \Sigma_{12} \end{bmatrix}$$

$$\Sigma = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix}.$$

Then the $[Y_1|Y_2 = a] \sim MVN(\mu_{1|2}, \Sigma_{1|2})$ with

•
$$\mu_{1|2} = \mu_1 - \Sigma_{12} \Sigma_{22}^{-1} (a - \mu_2)$$
 and

•
$$\Sigma_{1|2} = \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}$$

Covariance function

- Need a way to specify the covariance matrix Σ for any set of locations (s₁, s₂,..., s_n)
- Σ has to be positive definite.
- Want locations close to have higher correlation that locations further away.

One valid correlation function:

Exponential correlation function

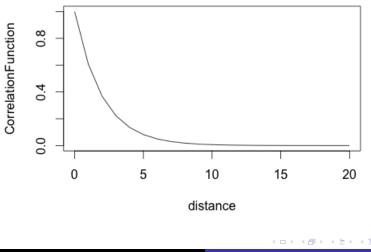
$$Corr(Y(s_1), Y(s_2) = \exp(-d(s_1, s_2)/\theta_1)$$

where $d(s_1, s_2)$ is the (Euclidian) distance between s_1 and s_2 .

Exponential covariance function :

$$C(Y(s_1), Y(s_2)) = \sigma_1^2 Corr(Y(s_1), Y(s_2))$$

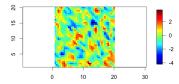
Exponential correlation function, $\theta = 2$

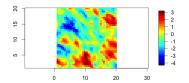


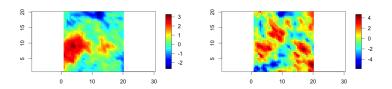
æ

Examples samples from GRFs

How are these different?







Now we assumes

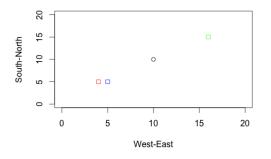
- $\bullet\,$ Known parameters, i.e. mean μ and covariance function / $\Sigma\,$
- Perfect observations (observe Y(s))

Example: Temperature outsid my home

- Want to predict, with uncertainty, the temperature at location s_0 , i.e. $Y(s_0)$.
- Know the temperature at locations $s_1, s_2, \ldots s_p$.
- How to predict? Hint: Conditional MVN

Predictions, what design is best?

- Want to predict at (10, 10) (black)
- Can observe Y(s) at (5,5), (4,5) and (16,15).
- Which will you chose if you can chose 1 site?
- Which will you chose if you can chose 2 site?



- Read stationary and isotropic (page 34)
- Play with the code.

э