Part 3: Lattice processes

Last week:

Yesterday:

Today

Lattice data and lattice processes
Neighborhoods and cliques
Conditional independence graph
Brook's lemma
Hammersley-Clifford's theorem
Markov Random Fields (MRF)

Ising model (Binary MRF)
Inference

Inference (INLA = Integrated Nested Laplace
Approximations)
Modeling

e Germany

e Scot's pine in Sweden (maybe)
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Lattice data and lattice process

Lattice data: Y/(s;): Data for discrete spatial features (districts,
pixels, voxels, non-overlapping catchments)

Lattice process: Z(s: s € Ds) defined on a finite or countable
subset D; of R? (d=2).

Want to define models 'locally’ through full conditional
distributions.
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Sample from GMRF model with Gaussian data process
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Scots pine in Sweden
Scots Pine Data
Pedigree 56 unrelated parents, partial diallel design. Original

8160 seedlings.
Spatial location 2.2 x 2.2m grid, two trail sites.
Data Hight and bad(1) / good(0Q) branch angle of 4970
26-years-old scots pine.

Easting

Northing
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INLA: Integrated Nested Laplace approximations
@ A new method for doing Bayesian inference for
latent Gaussian Markov Random Field models.
@ Based on direct approximations (no sampling)
@ R-package, r-inla, available at
www-r-inla.org

Key papers

H. Rue, S. Martino & N. Chopin Approximate
Bayesian inference for latent Gaussian models
by using integrated nested Laplace
approximations, JRSS-B, 2009

Martins, T. G., Simpson, D., Lindgren, F. K. &
Rue, H. Bayesian computing with INLA : New
features. Comp. Stat. & Data Anal., 2013
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Inference methods

Markov Chain Monte Carlo, MCMC

@ Run a Markov chain to get samples from 7(x, 6|y)

@ Can find posterior for any parameter(s) / variable(s) or
function of variables

@ But 1: Need many iterations / takes a long time.

@ But 2: Burn-in and mixing problems, hard to detect.

March 17, 2017, Ingelin Steinsland TMA 4250: Lattice processes



Inference methods
Markov Chain Monte Carlo, MCMC

@ Run a Markov chain to get samples from 7(x, 6|y)

@ Can find posterior for any parameter(s) / variable(s) or
function of variables

@ But 1: Need many iterations / takes a long time.

@ But 2: Burn-in and mixing problems, hard to detect.

Integrated Nested Laplace Approximations, INLA

@ Non-sampling based numerical method.
o Fast(er) = enables simulation studies

@ But 1: For latent Gaussian Markov Random Field (GMRF)
models with max. 15-20 non-Gaussian hyper-parameters.

@ But 2: Posteriors for functions of variables and jointly more
tricky.
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C vs INLA, 2D example

Posterior marginal for logistic range and log pracision.
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MCMC vs INLA, 2D example

Marginal density for scale and range paramesters.
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MCMC vs INLA, 2D example

Marginal density for scale and range paramesters.
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MCMC vs INLA, 2D example

Marginal density for scale and range paramesters.
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C vs INLA, 2D example

Posterior marginal for logistic range and log pracision.
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Integrated nested Laplace approximation

Hierarchical model:
@ Data: y ~ n(zly, ) = [T7, (zly,)
Q Latent field: y ~ 7(x]0), y ~ N(uz, Q1), GMRF.

© Hyper-parameters: 6 ~ 7(6), only few non-Gaussian.

Want to find 7(6|2), 7(y;|2),...- J
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© Laplace approximation

@ Numerical integration
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Integrated nested Laplace approximation

Hierarchical model:
@ Data: y ~7(zly,0) = [T, n(zly:)
Q Latent field: y ~ 7(x]0), y ~ N(u, Q1), GMRF.

© Hyper-parameters: 6 ~ (), only few non-Gaussian.

Want to find 7(0|2), 7(y;|z),.... J

Ideas

© Laplace approximation

m(0,ylz) _ 7(0,y|2)
m(ylz,0)  #(y|z,0)

where 7(y|z,6) Gaussian approximation to 7(y|z, 0)

7(0|z) =

@ Numerical integration
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Integrated nested Laplace approximation

Hierarchical model:
@ Data: y ~ 7(zly,0) = [I7_; n(zly:)
Q Latent field: y ~ 7(x]0), y ~ N(u, Q1), GMRF.

© Hyper-parameters: 6 ~ 7(0), only few non-Gaussian.

Want to find 7(0|2), 7(y;|z),.... J

Ideas

@ Laplace approximation

m(0,ylz) _ 7(0,yl2)
m(ylz,0)  #(ylz,0)

where 7(y|z,8) Gaussian approximation to 7(y|z, 0)

7(0|z) =

7(zi|y;, 0) Gaussian = w(t|z,6) Gaussian

@ Numerical integration
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Integrated nested Laplace approximation

Hierarchical model:
@ Data: y ~ 7(zly,0) = [, n(zly:)
Q Latent field: y ~ 7(x]0), y ~ N(u, Q1), GMRF.

© Hyper-parameters: 6 ~ (), only few non-Gaussian.

Want to find 7(0|2), 7(y;|z),.... J

Ideas

© Laplace approximation

......

© Numerical integration '
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INLA-Integrated Laplace

Want to find 7(6|z), |
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INLA-Integrated Laplace

Want to find 7(6|z), |

= [(yl6. 2) =(6]2)
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INLA-Integrated Laplace

Want to find 7(6|z), |

= [(yl6. 2) =(6]2)

e 7(0|z) = Laplace approximations
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INLA-Integrated Laplace

Want to find 7(6|z), |

= m(vil0, z) m(6]2)

e 7(0|z) = Laplace approximations

e 7(y;|0,z) = Laplace approximations
T(yi,y—il0,y)

m(yil,z) = #(y—il0.y)
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INLA-Integrated Laplace

Want to find 7(6|z), |

= [(yl6. 2) =(6]2)

e 7(0|z) = Laplace approximations

e 7(y;|0,z) = Laplace approximations

~ T(iy—il0.y)
m(yilf,2) = F(y—il0.y)
° = Numerical integration

March 17, 2017, Ingelin Steinsland TMA 4250: Lattice processes



INLA or MCMC?

@ Several papers that compare MCMC and INLA (Holand et al
2013 for animal models). Almost without exceptions, for a
given computation time INLA gives most accurate estimates.

@ NOTE: INLA sometimes works poorly for binary data.
(Gaussian in mode is a poor approximation to 7(x|6, y)).
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Deviance information criterion (DIC)

@ Measure for model fit, penalized for number of parameters.

o Introduced by Spiegelhalter et al. (2002)

@ A generalization of the AIC (Akaike information criterion) and
BIC (Bayesian information criterion) for hierarchical models.

e Computable in MCMC and INLA

DIC

Let z be data, and ¢ parameters (¢ = (a, 3,02, 02). Deviance:
D = log(m(z|¢))

DIC = pp+ D

© Mean deviance: Expected deviance: D = Ey|,(D(z[¢))
o Degrees of freedom: original pp = D — D(¢mean)- In INLA
PD = D — D(¢median)-

DIC: The smaller the better model.




