Part 2: Point Processes

Learning outcome

The student has also knowledge about basic concepts of the theory
of point random fields, including K- and L-statistics, spatial
Poisson, Cox and hard-core fields, and simulation of such point
fields. (...) Lastly, the student has knowledge of parameter
estimation in spatial random fields.

Extra text book: Statistical Analysis and Modelling of Spatial Point
Patterns by Janine lllian, Antti Penttinen, Helga Stoyan, Dietrich
Stoyan (2008)
TODAY:
Parameter estimation @ Maximum likelihood

@ Bayesian

@ Log-Gaussian Cox process
‘Satatistics’ @ Intensity, A(s)

@ 2nd order characteristics K(), L(), A\2() and g(h)
Simulation of Gibbs models
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http://onlinelibrary.wiley.com/book/10.1002/9780470725160
http://onlinelibrary.wiley.com/book/10.1002/9780470725160

Spatial Point Processe (SPP)

From Cressie and Wikle:
4.3 SPATIAL POINT PROCESSES

A spatial point process is a stochastic process governing the location of events
(equivalently, points) {s;} in some set D, C R¢, where the number of such
events in D; is also random (e.g., Diggle, 2003). In the simplest case, the

and we only consider:
Only simple spatial point processes in R? (i.e., almost surely, either no event
or a single event occurs at any point) will be considered. We characterize the

Number of points: Z(Ds) = m

Locations: {s1,%2,...,5m}

Need to find likelihood function
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Intensity functions

1 order intensity:

E(Z(ds))
A = ol Sl 4
1(s) |ds||rio |ds|
2. order intensity:
E(Z(d51)Z(d52))
Aa(s1,8) = i
2( ' 2) |ds1|—0,|dsz2|—0 |d51|’d52|
mth order intersity
E(Z(ds1)Z(ds,) ... Z(dsm
/\m(517527"'a5m): lim ( ( 51) ( 52) ( S ))

=0 |ds1||dsa] . .. |dSm|
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Ex. Random: Homogenous Poisson point process (HPPP)

An important, but simple, example is the Poisson point process Z, for which

Z(A)|A° ~ Poi(A°|Al), AC D, (4.159)

where A >0 is a parameter of the Poisson point process, and recall that |A|
is the d-dimensional volume of A. More details on this spatial point process
are given in Section 4.3.1.

Sampling from Poisson point process

Trees in 1km x 1km domain, with intensity A\’ = 15trees/km?

e Sample m ~ Pos(15)
efori=1:m
e sample location randomly in domain {s;}

@ end
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Hierachical statistical models (HM), and Cox process

[Z1Y, 0]
Process model: [Y6]

Parameter model: [6]

Cox process, Inhomogenious Poisson Point Process (IPPP)

[Z|A] ~ Pos( [, A(d)dx)

Process model: A(s) (Cox process)
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Pdf for Inhomogenious Poisson Process

(Cressie & Wikle page 215)

For example, because the (inhomogeneous) Poisson point process has inde-
pendent counts in disjoint regions, for that model, (4.184) becomes

fG1,. 0 smlm) = [ [IAG)/ [, Ax) dxl,

i=]
and from (4.185),
Pm = cxp(—fn_\_ A(x) dx){f.,,\ A(x)dx}" /m!, m=0,1,...,

which is the probability mass function of a Poisson distribution. Conse-

Need to evaluate [, A(x)dx, (same dimension as D, for us 2D)
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Summery likelihood and simulation of Gibbs processes

@ OK for models with onlt 1.order characteristics
@ General for models with 2nd order characteristics:

o Do not know [ ... [; Am(x1,...Xm)dx1 ... dx, and this is a
function of the parameters (intractable likelihoods)
o Solutions estimation: Integral(s) with MCMC, or composite

likelihood.
e Simulations Gibbs processes (and general)
o Can sample from f(sy,...,Sn|m) using Metropolise-Hasting

(update one point at time)
e To change number of points, use reversible jump (MH
methods for varying dimensions).
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Kernel estimati f intensity
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Figure 4.16 (a) Contour plot of estimated first-order intensity of m, = 271 adult longleaf pine
trees in the 4-ha study area in the Wade Tract; bandwidth b = 30 m. (b) Contour plot of estimated
first-order intensity of ms = 159 subadult longleaf pine trees in the same study area as (a); bandwidth
b =30 m.

February 14, 2017, Ingelin Steinsland TMA 4250:Point Processes



Edge-effects fix

From lllian etat 2008, page 185

Stationary Point Processes 185

Figure 43 A point pattern in a rectangular window W and its continuation by
reflection.
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K-function (left) subadult longleaf pines
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Figure 4.17 (a) Estimated K function for the ms = 159 subadult longleaf pine trees (red circles)
in the 4-ha study area in the Wade Tract; the theoretical K function for CSR is superimposed (solid
blue line). (b) Estimated L function for the ms = 159 subadult longleaf pine trees (red circles)
obtained from (a); the 95% pointwise confidence limits for L values based on 1000 CSR realizations
(dashed blue lines) are superimposed.
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K-function and L-function for isotropic point process

from Cressie & Wikle page 210 and 211

within distance h of an arbitary event. Finally, the definition of the homo-
geneous K function is (Ripley, 1976)

e number of extra events within
ot L B (distancc h of an arbitrary cvcm) : 2N, AN

v

L(h) = (K(R)T(1 + (d/2))/x/?) /4 — h, h>0. (4.179)

D—

(often without '—h")
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2nd order intensity and Pair-correlation function

2nd order intensity
E(Z(ds)Z(dx))

Ao(s, x) = im
2(s:x) |ds|—0, | dx|—0 |ds||dx|

Pair correlation function

For HPPP: (s, x) = A(s)A(x) and g(s,x) = 1
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Example: Gold particles

From lllian et al (2008)
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Figure 1.3 Ultrathin section of a pellet of purified tobacco rattle virus after
immunogold labelling with a goat antirabbit gold (size 15nm) probe in a rectan-
gular window of size 1064.7 x 676 nm. The 218 gold particles are identifiable as
dark spots in the electron-microscopic image. The diameters of the small circles
are proportional to the gold particle diameters. Data courtesy of C. Glasbey.
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Pair-correlation function for gold particles

222 Stationary Point Processes
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Figure 4.20 The empirical pair correlation function of the pattern of gold particles,
obtained with the estimator (4.3.38) and bandwidths i = 31u for » < 201lu and 61lu
for r= 201u and improved with the reflection method. The dashed line shows the
result without this correction. A comparison with Figure 4.18 reveals the advantages
of using g(r) as opposed to L(r) as an instructive summary characteristic.
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Matern cluster process

From lllian et al 2008 page 379

Modelling and Simulation
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Figure 6.3  Simulated planar Matérn cluster process in[1]. The intensity is A =200,
the cluster radius is R =0.05 and the mean number of points per cluster is ¢ =10.
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Ex Bandwidth paire correlation

From lllians et al 2008 page 237
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Figure 4.23 The theoretical pair correlation function g(r) of a Matérn cluster
process as described in the text (solid line) and its estimates g(r) with i =0.007
(dashed line) and 0.001 (dotted line). The irregular fluctuations of the estimates
for r larger than 0.1 do not provide any interpretable information.
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Phlebocarya filifolia plants

From lllians et al 2008 page 8
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Figure 1.4 Positions of 207 Phlebocarya filifolia plants in a 22 x 22m square at
Cooljarloo near Perth, West Australia. Data courtesy of P. Armstrong.
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Pair correlation function Phlebocarya

From lllians et al 2008 page 221
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Figure 4.19 Empirical pair correlation functions for the pattern of Phlebocarya
positions, obtained with bandwidths & =10.5 (dashed line) and 2.0m (solid line).
The large values for small » obtained with =2 m indicate strong clustering, while
the values larger than I for r around 8 m may indicate larger clusters. For the
smaller /i the lattice nature of the pattern becomes apparent. The use of adapted
bandwidths makes sense here.
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