TMA4250 Spatial Statistics, spring 2017

What: Tools to think about and handle spatial phenomenon.

Who:

Why:

Course page:

https://wiki.math.ntnu.no/tma4250/2017v/start

TMA4250 Spatial Statistics, spring 2017

What: Tools to think about and handle spatial phenomenon.

Who:

- Students ...
- Lecturer: Ingelin Steinsland
- Teaching Assistent: Thea Roksvåg
- Guests: Torstein Mæland Fjeldstad and Haakon Bakka

Why: Useful, relevant og fun

Course page:

https://wiki.math.ntnu.no/tma4250/2017v/start

TMA4250 Spatial Statistics, spring 2017

What: Tools to think about and handle spatial phenomenon.

Who:

Students ...

Lecturer: Ingelin Steinsland

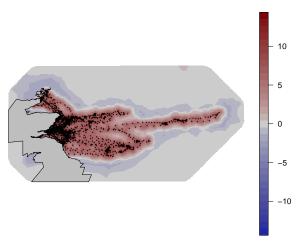
Teaching Assistent: Thea Roksvåg

 Guests: Torstein Mæland Fjeldstad and Haakon Bakka

Why: Useful, relevant og fun

How: Assignments, text book(s) and lectures

Course page:


https://wiki.math.ntnu.no/tma4250/2017v/start

Examples of spatial staistics

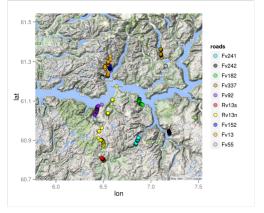
- Our data
- Thea (Precipitation)
- Torstein (Lithology)
- Haakon (Seals in Scotland)
- Avalanches in Sogn
- Lightning strikes over Norway
- Methylation
- Doctor-prescription in France
- Scots pine in Sweden

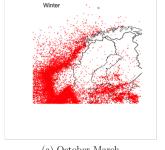
Grey Seals

Presented by Haakon Bakka

Avalanges crossing roads in Sogn

From Jostein Ballestad's Master Thesis:




Figure 2.2: Sognefjorden with registered avalanches indicated by dots. The different colors represent different roads.

Lightning strikes over Norway From Siri Sofie Eids's project thesis.

Data and explanatory analysis for strikes

Each observation in the dataset is the number of lightning strikes within an area of dimension $40 \times 40 \text{ km}^2$ (N) centered in a grid point s with a certain latitude and longitude, within \pm 0.5 hours of time t. There are a total of 155 different grid points, (see figure 2.1). All in all there are 602,789 observations.

(a) October-March

(b) April-September

Figure 2.4: Seasonal variations in lightning strikes. Both figures show random samples of 50,000 lightning strikes from the specified months over a 10 year period.

Methylation

From Haakon Egdetveit Nustad's Master Thesis.



Figure 3.1: Matrix plot of methylation data at 250 subsequent locations at chromosome 1, for 40 randomly chosen people from the Schizophrenia data set.

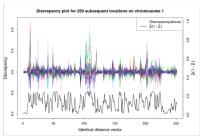


Figure 3.2: Discrepancy plot of methylation data at 250 subsequent locations at chromosome 1, for 40 randomly chosen people from the Schizophrenia data set. A function of the sample mean is plotted underneath, with axis(right hand side) chosen such that both plots are readable.

Doctor-prescription in France

From Cressie and Wikle

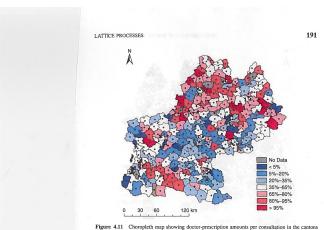
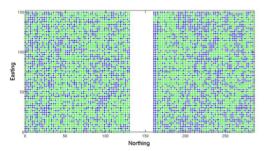


Figure 4.11 Choropleth map showing doctor-prescription amounts per consultation in the cantons of the Midi-Pyrénées (France). The "star" denotes the canton containing Toulouse. Percentiles used first challenges and believe from [P.].


Scots pine in Sweden

Scots Pine Data

Pedigree 56 unrelated parents, partial diallel design. Original 8160 seedlings.

Spatial location 2.2×2.2 m grid, two trail sites.

Data Hight and bad(1) / good(0) branch angle of 4970 26-years-old scots pine.

What is *spatial* and what is *statistics*?

Spatial

Statistics

The *science* statistics

What is *spatial* and what is *statistics*?

Spatial

A reference to location (often geo location)

Statistics

The science statistics

What is *spatial* and what is *statistics*?

Spatial

A reference to location (often geo location)

Statistics

The science statistics

Statistics is the science about learning from data, and measuring, control and communication of uncertainty. (Davians Louis, Science, 2012).

Statistics is a tool to make judgments and make decisions under uncertainty and variability.

Statistical model: An (idealized) model of how data has been generated.

Three parts:

- Part 1: Geostatistical Processes (chapter 4.1)
- Part 2: Spatial Point processes (chapter 4.3 ++)
- Part 3: Lattice processes (chapter 4.2, focus on discrete Markov random fields)

Success treatment of Kidney stones (pg 12)

- For all surgery Open surgery: Success rate 78 %
 - Ultra sound: Success rate 83 %

Success treatment of Kidney stones (pg 12)

For all surgery • Open surgery: Success rate 78 %

Ultra sound: Success rate 83 %

For small stones: • Open surgery: Success rate 93 %

Ultra sound: Success rate 87 %

Success treatment of Kidney stones (pg 12)

For all surgery • Open surgery: Success rate 78 %

Ultra sound: Success rate 83 %

For small stones: • Open surgery: Success rate 93 %

• Ultra sound: Success rate 87 %

For large stones: • Open surgery: Success rate 73 %

Ultra sound: Success rate 69 %

Success treatment of Kidney stones (pg 12)

For all surgery • Open surgery: Success rate 78 %

Ultra sound: Success rate 83 %

For small stones: • Open surgery: Success rate 93 %

Ultra sound: Success rate 87 %

For large stones: • Open surgery: Success rate 73 %

• Ultra sound: Success rate 69 %

Lurking variable: Patients kidney stone size

The Ecological Fallacy

Foreigne born and litteracy in US, 1930s (pg 197)

At individual level: Correlation: -0.11

The Ecological Fallacy

Foreigne born and litteracy in US, 1930s (pg 197)

At individual level: Correlation: -0.11

At state level: Correlation 0.53

The Ecological Fallacy

Foreigne born and litteracy in US, 1930s (pg 197)

At individual level: Correlation: -0.11

At state level: Correlation 0.53

Same as Simpsons's paradox, due to change-of-support, also named ecological bias

Before Wednsday

- Read Chapter 1, 2.1 and 2.2 in Cressie and Wikle.
- Review Multivariate Gaussian Distribution (definition and conditional probability)
- Read introduction to Chapter 4 and 4.1 in Cressie and Wikle