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Motivation
Characterising species distributions is a fundamental challenge in ecology. Understanding the effects of changing environmental conditions on species distributions is re-
quired for conservation efforts and spatial planning. However, mapping distributions are challenging for many species as they reside in inaccessible terrain such as marine
environments and mountainous regions. To follow their movements, remote sensors can be attached to animals that record location, movement, physiological parameters, and
environmental conditions, termed telemetry data. These data have intrinsic properties, such as strong spatiotemporal autocorrelation due to successively observed animal
locations, and study areas defined by the animals themselves can range over wide geographical areas. We propose to develop statistical advances that accommodate complexities
of such data to allow robust predictions of changes in species distributions.

Different Terrain Model

• Shown here is a successful example using this
model.

• Studying smelt (Osmeridae) larvae in the Finnish
Archipelago near Turku, where land is a barrier
that fish cannot cross.

• Previous approaches use stationary autocor-
relation fields, assuming dependence contin-
ues across boundaries homogenously, ‘leaking’
across barriers.

•High correlation between points on the opposite
sides of land (i.e. smooths over land).

•Developed methodology uses a flexible random
effect on autocorrelation.

• Stochastic partial differential equations (Lindgren
et al. 2011) combined with Integrated nested
Laplace approximation (INLA) (Rue et al. 2009),
adaptable range parameters account for non-
stationarity and boundary effects.

• The Different Terrain model estimate does not
smooth over land.

• Covariate estimates change from stationary to DT
model, although predictive performance was sim-
ilar on these data.
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Figure 1: A priori stationary correlation structure
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Figure 2: A priori non-stationary correlation

Theoretical construction
We used the SPDE approach by Lindgren et al. (2011), re-parametrised the equation, and used a
separate range for different terrains (land and water).
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Impact on inference results
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Figure 3: Estimate of the spatial field (posterior mean).
Covariates are in addition to this.
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Figure 4: Spatial uncertainty (posterior standard devi-
ation) for the spatial field.

Model Estimate 2.5 % 97.5%
Stationary -0.80 -1.82 0.30
DT model -1.01 -2.02 -0.04

Table 1: Example of an estimated covariate (ShoreDens) in
the model. Covariates can range from significant to not sig-
nificant, or vice versa.

• If underlying autocorrelation within the move-
ment data is not accounted for correctly, covari-
ates can be falsely identified as being important
(or unimportant) to a species’ habitat use because
uncertainty and parameter estimates are incorrect.

• If these covariates are used to suggest changes in
space use under changing environmental condi-
tions, those predictions may be misleading.

•When movement data are analysed as spatial
point patterns, assuming stationarity is problem-
atic because non-stationarities in the mean can be
masked (analogous to unmodelled covariates).

•Area-dependent spatial autocorrelation allows
important variation in movement behaviour can
be described and animals’ sensitivity to changes
in the environment can be captured.

• For the fish larvae, the DT model results in higher
uncertainty in inlets.
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Data

Grey seals (Halichoerus grypus)

• Telemetry data from grey seals tagged in the Netherlands will be analysed. They are central place
foragers, travelling to their at-sea feeding grounds before returning to haul out on land.

• Foraging behaviour typically produces focused repetitive movements in a small area, whilst travelling
behaviour can be demonstrated by directed movement over large distances.

• Such behaviours are often analysed using state-space models which are computationally intensive.

•Our new models will use different spatial autocorrelation structures in the foraging and travelling
areas (based on informative priors).

(a) (b)

Figure 5: (a) Grey seal with telemetry tag (photo credit: SMRU), (b) telemetry locations of 4 animals tagged in east
Scotland in 2011-12 by SMRU.

Black eagles (Aquila verreauxii)

• Like other large raptors, black eagles rely heavily on uplift for flight, generated either by thermal
updrafts or the flow of air over steep slopes.

• Their movements inside (soaring) and outside updrafts are different and so fields of varying spatial
autocorrelation will be implemented.

• To enable commercial developers, policy makers, and conservationists to work effectively tools must
be developed to robustly analyse the vast amounts of data generated by remote sensing.

(a) (b)

Figure 6: (a) Black eagle (photo credit: Mario Moreno), (b) telemetry locations of 5 eagles tagged in South Africa (provided
by Theoni Photopoulou).

Outcomes

• The aim is to provide an integrated species distribution modelling framework.

•General methodology of non-stationary random fields will be implemented in existing R-INLA li-
brary.

•We will also develop a set of wrapper functions specific to movement modelling.

• These data examples will be used in R-INLA courses currently run by members of the research group.
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