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Background

Latent Gaussian models

Stage 1 Observed data y = (yi ),

yi | x,θ ∼ π(yi |xi ,θ)

Stage 2 Latent Gaussian field

x | θ ∼ N (µ,Q(θ)−1), Ax = 0

Stage 3 Priors for the hyperparameters

θ ∼ π(θ)

Unify many of the most used models in statistics



INLA

Latent Gaussian models

Background

Latent Gaussian models

Stage 1 Observed data y = (yi ),

yi | x,θ ∼ π(yi |xi ,θ)

Stage 2 Latent Gaussian field

x | θ ∼ N (µ,Q(θ)−1), Ax = 0

Stage 3 Priors for the hyperparameters

θ ∼ π(θ)

Unify many of the most used models in statistics



INLA

Latent Gaussian models

Background

Latent Gaussian models

Stage 1 Observed data y = (yi ),

yi | x,θ ∼ π(yi |xi ,θ)

Stage 2 Latent Gaussian field

x | θ ∼ N (µ,Q(θ)−1), Ax = 0

Stage 3 Priors for the hyperparameters

θ ∼ π(θ)

Unify many of the most used models in statistics



INLA

Latent Gaussian models

Background

Latent Gaussian models

Stage 1 Observed data y = (yi ),

yi | x,θ ∼ π(yi |xi ,θ)

Stage 2 Latent Gaussian field

x | θ ∼ N (µ,Q(θ)−1), Ax = 0

Stage 3 Priors for the hyperparameters

θ ∼ π(θ)

Unify many of the most used models in statistics



INLA

Latent Gaussian models
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Structured additive regression models

Linear predictor

ηi =
∑
k

βkzki +
∑

j

wji fj(zji ) + εi

• Linear effects of covariates {zki}
• Effects of fj(·)

• Fixed weights {wji}
• Commonly: fj(zji ) = fj,zji

• Account for smooth response
• Temporal or spatially indexed covariates
• Unstructured terms (“random effects”)

• Depend on some parameters θ
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• Dynamic linear models

• Stochastic volatility

• Generalised linear (mixed) models

• Generalised additive (mixed) models

• Spline smoothing

• Semiparametric regression

• Space-varying (semiparametric) regression models

• Disease mapping

• Log-Gaussian Cox-processes

• Model-based geostatistics (*)

• Spatio-temporal models
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Latent Gaussian models

Examples

Example: Disease mapping (BYM-model)

• Data yi ∼ Poisson(Eiexp(ηi ))

• Log-relative risk
ηi = ui + vi + βTzi

• Structured component u

• Unstructured component v

• Covariates zi

• Log-precisions log κu and log κv

0.7

0.98

1.27

1.55

1.83

2.11

2.4
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Characteristic features

• Large dimension of the latent Gaussian field: 102 − 105

• A lot of conditional independence in the latent Gaussian field

• Few hyperparameters θ: dim(θ) between 1 and 5

• Non-Gaussian data
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Main task

• Compute the posterior marginals for the latent field

π(xi | y), i = 1, . . . , n

• Compute the posterior marginals for the hyperparameters

π(θj | y), j = 1, . . . , dim(θ)

• Today’s “standard” approach, is to make use of MCMC

• Main difficulties
• CPU-time
• Additive MC-errors
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• Laplace approximations

• Utilise the conditional independence properties of the latent
Gaussian field

• Numerical algorithms for sparse matrices

• Utilise small dim(θ)
• Integrated Nested Laplace approximations
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Our approach

Summary of results

Main results

• HUGE improvement in both speed and accuracy compared to
MCMC alternatives

• Relative error

• Practically “exact” results2

• Extensions: Marginal likelihood, DIC, Cross-validation, ...

INLA enable us to treat Bayesian latent Gaussian models properly
and bring these models from the research communities to the
end-users

2Can construct counter-examples



INLA

Our approach

Summary of results

Main results

• HUGE improvement in both speed and accuracy compared to
MCMC alternatives

• Relative error

• Practically “exact” results2

• Extensions: Marginal likelihood, DIC, Cross-validation, ...

INLA enable us to treat Bayesian latent Gaussian models properly
and bring these models from the research communities to the
end-users

2Can construct counter-examples



INLA

Our approach

Summary of results

Main results

• HUGE improvement in both speed and accuracy compared to
MCMC alternatives

• Relative error

• Practically “exact” results2

• Extensions: Marginal likelihood, DIC, Cross-validation, ...

INLA enable us to treat Bayesian latent Gaussian models properly
and bring these models from the research communities to the
end-users

2Can construct counter-examples



INLA

Our approach

Summary of results

Main results

• HUGE improvement in both speed and accuracy compared to
MCMC alternatives

• Relative error

• Practically “exact” results2

• Extensions: Marginal likelihood, DIC, Cross-validation, ...

INLA enable us to treat Bayesian latent Gaussian models properly
and bring these models from the research communities to the
end-users

2Can construct counter-examples



INLA

Our approach

Summary of results

Main results

• HUGE improvement in both speed and accuracy compared to
MCMC alternatives

• Relative error

• Practically “exact” results2

• Extensions: Marginal likelihood, DIC, Cross-validation, ...

INLA enable us to treat Bayesian latent Gaussian models properly
and bring these models from the research communities to the
end-users

2Can construct counter-examples



INLA

Main ideas

Main ideas (I)

π(z) =
π(x , z)

π(x |z)
leading to π̃(z) =

π(x , z)

π̃(x |z)

∣∣∣
mode(z)

• When π̃(x |z) is the Gaussian-approximation, this is the
Laplace-approximation

• Want π(x |z) to be “almost Gaussian”.
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Posterior

π(x,θ | y) ∝ π(θ) π(x | θ)
∏
i∈I

π(yi | xi ,θ)

Do the integration wrt θ numerically
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Main ideas

Remarks

1. Expect π̃(θ|y) to be accurate, since
• x|θ is a priori Gaussian
• Likelihood models are ‘well-behaved’ so

π(x | θ, y)

is almost Gaussian.

2. There are no distributional assumptions on θ|y
3. Similar remarks are valid to

π̃(xi | θ, y)
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Computational issues

• Our approach in its “raw” form is not computational feasible

• Main issue is the large dimension, n, of the latent field

• Various strategies/tricks are required for obtaining a practical
good solution
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Gaussian Markov random fields

Gaussian Markov random fields

Make use of the conditional independence properties in the latent
field

xi ⊥ xj | x−ij ⇐⇒ Qij = 0

where Q is the precision matrix (inverse covariance)

Use numerical methods for sparse matrices!
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Rank one updates

• Have computed the Cholesky factorisation

Prec(x) = Q = LLT

• Want to compute the conditional mean and variances for

x−i | xi

• No need to factorise Prec(x−i |xi ); can compute the correction
for conditioning on xi .
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Simplified Laplace

Simplified Laplace Approximation

Expand the Laplace approximation of π(xi |θ, y):

log π̃(xi |θ, y) = −1

2
x2
i + bixi +

1

6
di x3

i + · · ·

Remarks

• Correct the Gaussian approximation for error in shift and
skewness through bi and di

• Fit a skew-Normal density

2φ(x)Φ(ax)

• Computational fast

• Sufficient accurate for most applications
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The integrated nested Laplace approximation (INLA) I

Step I Explore π̃(θ|y)

• Locate the mode
• Use the Hessian to construct new variables
• Grid-search
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The Integrated nested Laplace-approximation (INLA)

Summary

The integrated nested Laplace approximation (INLA) II

Step II For each θj

• For each i , compute the (simplified) Laplace
approximation for xi
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The Integrated nested Laplace-approximation (INLA)

Summary

The integrated nested Laplace approximation (INLA) III

Step III Sum out θj

• For each i , sum out θ

π̃(xi | y) ∝
∑

j

π̃(xi | y,θj)× π̃(θj | y)

• Build a log-spline corrected Gaussian

N (xi ; µi , σ
2
i )× exp(spline)

to represent π̃(xi | y).
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• For each i , sum out θ

π̃(xi | y) ∝
∑

j

π̃(xi | y,θj)× π̃(θj | y)

• Build a log-spline corrected Gaussian

N (xi ; µi , σ
2
i )× exp(spline)

to represent π̃(xi | y).
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The Integrated nested Laplace-approximation (INLA)

Assessing the error

How can we assess the errors in the approximations?

Important, but asymptotic arguments are difficult:

dim(y) = O(n) and dim(x) = O(n)
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The Integrated nested Laplace-approximation (INLA)

Assessing the error

Errors in the approximations of π(xi |y)

Compare a sequence of improved approximations

1. Gaussian approximation

2. Simplified Laplace

3. Laplace

Compute the full Laplace-approximation for π(xi |y,θj) only if the
Gaussian and the Simplified Laplace approximation disagree.
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The Integrated nested Laplace-approximation (INLA)

Assessing the error

Overall check: Equivalent number of replicates

Tool 3: Estimate the “effective” number of parameters

• From the Deviance Information Criteria:

pD(θ) ≈ n − trace
(
Qprior(θ) Qpost.(θ)−1

)
• Compare with the number of observations:

#observations/pD(θ)

high ratio is good

• Theoretical justification
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Examples

• 10:30-11:30: Andrea Riebler: Performance of INLA analysing
bivariate meta-regression and age-period-cohort models.

• 12:30-13:30: Birgit Schrödle: Spatio-temporal disease
mapping using INLA.

• 13:45-14:45: Virgilio Gómez-Rubio: Approximate Bayesian
Inference for Small Area Estimation

• 15:00-16:00: Lea Fortunato: About the Rapid Inquiry Facility,
and spatial analyses with WinBUGS and INLA.

• 09:00-10:00: Rupali Akerkar: Approximate Bayesian Inference
for Survival models.

• 10:15-11:30: Ingelin Steinsland & Anna Marie Holand: Animal
Model and INLA.
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Extensions

Marginal likelihood

Marginal likelihood

Marginal likelihood is the normalising constant for π(θ|y)
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Extensions

DIC

Deviance Information Criteria

D(x; θ) = −2
∑

i

log(yi | xi ,θ)

DIC = 2×Mean (D(x; θ))− D(Mean(x); θ∗)
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Cross-validation

Cross-validation

• Based on

π(xi |y−i ,θ) ∝ π(xi |y,θ)

π(yi |xi ,θ)

we can compute
π(yi | y−i )

• Similar with π(θ|y−i )

• Keep the integration points {θj} fixed.

• Detect “surprising” observations:

Prob(ynew
i ≤ yi | y−i )
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Cross-validation

• Based on

π(xi |y−i ,θ) ∝ π(xi |y,θ)

π(yi |xi ,θ)

we can compute
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• Similar with π(θ|y−i )

• Keep the integration points {θj} fixed.
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Prob(ynew
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Recent developments

“Recent” developments in (R-)INLA

• Improving the code: speedups and improved parallel
performance

• Improving the R-interface

• Extending the building-blocks: prior-models and
likelihood-models

Lot of things still todo...

• Documentation

• Worked out examples

• Webpage

• +++
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Improving the code

The two largest changes the last year

• (summer 2008) Change the way inla works in a multi-core
environment.
Especially important for more than “dual-core”

• (xmas 2008) Implement a more efficient rank-one update
formula (Thanks Birgit!).
Especially important for models with many constraints, but
gave a huge speedup also for models with a single constraint.
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Recent developments

inla & multi-core

• Gradient and Hessian computations are done in parallel

∂

∂θ i
π̃(θ | y) and

∂2

∂θi∂θj
π̃(θ | y)

• All computations of
π̃(xi | θj , y)

is now done in parallel wrt j , and not i as before.
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Recent developments

Multi-core example

inla-example 7: CANCER-INCIDENCE, n = 7138, dim(θ) = 3

Number of cores Time used

1 20.0s
2 13.3s
4 9.1s
6 8.6s
8 8.3s

• Linear algebra (Cholesky/Solve/Inverse): ≈ 50%

• Administration: ≈ 50%
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Recent developments in (R-)INLA

Improved R-interface

• inla-binary is now bundled with the R-package.

• Make use of model.matrix() in R:
formula ~ ... + x*z

will expand as

formula ~ ... + x + z + x:z

• Allow for
formula ~ .... + offset(a) + offset(b)

defining a+b to be fixed offset in formula

Larger change for survival-models (more on this tomorrow...)
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Recent developments

Building blocks

> names(inla.models()$models)
[1] "iid" "rw1" "rw2"
[4] "crw2" "seasonal" "besag"
[7] "ar1" "generic" "2diid"

[10] "2diidwishart" "2diidwishartpart0" "2diidwishartpart1"
[13] "3diidwishartpart0" "3diidwishartpart1" "3diidwishartpart2"
[16] "z" "rw2d" "matern2d"
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Recent developments

The “z”-model

The z-models is
η = ...+ Zz + ....

where Z is a n × k matrix and z ∼ Nk(0, τ I).
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Recent developments

Likelihood models

> names(inla.models()$lmodels)
[1] "poisson" "binomial"
[3] "exponential" "piecewise.constant"
[5] "piecewise.linear" "gaussian"
[7] "laplace" "weibull"
[9] "weibullcure" "stochvol_t"

[11] "zeroinflated_poisson_0" "zeroinflated_poisson_1"
[13] "zeroinflated_binomial_0" "zeroinflated_binomial_1"
[15] "T" "stochvol.nig"
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Recent developments

Zero-inflated models

The (type 0) likelihood is defined as

Prob(y | . . .) = p × 1[y=0] + (1− p)× Poission(y | y > 0)

The (type 1) likelihood is defined as

Prob(y | . . .) = p × 1[y=0] + (1− p)× Poission(y)

[Birgit: Mixture over p is still on the list... sorry.]



INLA

Recent developments

The TODO-list

• Better support for spatial (GMRF) models. More on this
tomorrow (Finn.L).

• Alternative spline-models, B-splines? (Thomas.K ?)

• Simultaneous credibility intervals

• Documentation

• Worked out examples

• Webpage

• +++
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Summary

Summary (I)

• Latent Gaussian models unifies many models into the same
framework: unified approach towards Bayesian inference

• Use the same computer code
• Near optimal numerical algorithms for the sparse matrices
• Achieve nice speed-ups in a multi-core environment
• Practically “exact” results

• Prototype implementation
• inla-program: Inference for structured additive regression

models
• GAM-like R-interface to the inla-program
• Available for Linux/Mac/Windows
• Open source
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Summary (II)

It is our view that the prospects of this work are more important
than this work itself:

• Make latent Gaussian models, more applicable, useful and
appealing for the end user

• Allow us to use latent Gaussian models as baseline models,
even in cases where more complex models are more
appropriate
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