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Approximate Bayesian Inference

Survival Data

Censoring

Let T be a random survival time, the following functions are
defined:

I Density function:

T ∼ f (t)

I Survival function:

S(t) = 1− F (t) =

∫ ∞
t

f (u)du

I Hazard function:

h(t) = lim
δt→0

1

δt
P(t < T < t + δt | T > t)

thus

h(t) = lim
δt→0

S(t)− S(t + δt)

S(t)
=

f (t)

S(t)
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Survival Data

Censoring

Censoring

I Uncensored observation: The failure time is recorded

I Right censored observation: The censoring time C < T is
recorded

I Interval censored observation: The failure time is not
observed exactly but it is known that Tlo < T < Tup
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Survival Data

Censoring

Each observation is described by a triple(Tlo , Tup, δ) with

Tlo = Tup = T , δ = 1 if the obs. is uncensored

Tlo = Tup = C , δ = 0 if the obs. is right censored

Tlo < Tup, δ = 0 if the obs. is interval censored
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Survival Data

Likelihood

Likelihood

The likelihood function is:

L =
∏

Li

where:
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Survival Data

Likelihood

I if i is uncensored

Li = h(T )S(T ) = h(T )exp{−
∫ T

0
h(u)du}

I if i is censored

Li = S(C ) = exp{−
∫ C

0
h(u)du}
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Survival Data

Likelihood

I if i is interval censored

Li = S(Tlo)− S(Tup)

= exp{−
∫ Tl0

0
h(u)du}{1− exp(−

∫ Tup

Tlo

h(u)du)}
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Survival Data

Likelihood

The contribution to the log-likelihood of data i , (Tlo ,Tup,δi ), is in
general

li = δih(Tup,i )−
∫ Tup,i

0
h(u)du + log{1− exp(−

∫ Tup,i

Tlo,i

h(u)du)}
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Survival Data

Likelihood

The contribution to the log-likelihood of data i , (Tlo ,Tup,δi ), is in
general

li = δih(Tup,i )−
∫ Tup,i

0
h(u)du + log{1− exp(−

∫ Tup,i

Tlo,i

h(u)du)}

Only included for interval censored data
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Survival Models

Model

Cox Model

The model proposed by Cox in 1972 is

h(t|z1, ...., zp) = h0(t) exp(z1β1 + ....+ zpβp)

I h0 = baseline hazard

I zi = covariates

I βi = regression parameters

For this model, the covariates are assumed to have fixed effects on
failure pattern.
But the covariates effects do change with time.
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Survival Models

Model

More comprehensive model

A more comprehensive model is achieved by assuming

h(t) = exp(z0β0(t) + ...+ z1βp(t))

where β0 = log(h0).
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Survival Models

Model

I Parametric models
I Exponential
I Weibull

I Parametric models with frailty
I Semiparametric models

I Piecewise-constant baseline hazard
I Piecewise-linear baseline hazard
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Survival Models

Parametric models

The Weibull model
I The data : (Tlo,i , Tup,i , δi ), i = 1,...,nd

I The hazards rate :

h(u; z , α) = αuα−1exp(η)

with η = zTβ
I the log-likelihood :

l = δh(Tup)−
∫ Tup

0
h(u)du + log{1− exp(−

∫ Tup

Tlo

h(u)du)}

= δ[logα + (α− 1)logTup + η]− eηTα
up + log{1− e−eη(Tα

up−Tα
lo )}

I Priors for parameters :

β ∼ N(0, τβI )

α ∼ π(α)
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Survival Models

Parametric models
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Survival Models

Parametric models

The Weibull model as a latent Gaussian model

I The latent Gaussian field

x = {η1, ..., ηnd
, β} ∼ N(0,Q−1)

I The hyperparameters
θ = α

I The likelihood

π(data|x,θ) =

nd∏
i=1

π(datai |ηi ,θ)

We can apply INLA to this model without problems!!
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Survival Models

Parametric models

Note

In more general term we can have

η =
∑

j

fj(zj) +
∑
k

βj z̃j + ε

where fj(zj) can represent

I smooth effect of covariate

I time varying effect of covarite

I space effect

As long as the prior for f () is Gaussian we are still in the latent
Gaussian model framework!
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Survival Models

The Weibull model

Example1 - Kidney data

(Nahman et al.,1992) The time to the first infection for kidney
dialysis patients is analysed. The data are right censored. One
binary covariate z is catheter placement.
The model is

h(t; z) = αtα−1exp{β0 + β1z}

we assume
β0, β1 ∼ N(0, 0.001)

α ∼ Γ(1, 0.001)
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Survival Models

The Weibull model

Example
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Survival Models

Parametric models with frailty

Parametric models with frailty - Hazard function

Let tij be the survival times for the j th subject in the i th cluster,
i=1,...,n,j=1,...,mi , the hazard function is given as:

h(tij ; zij ,wi , α) = αtα−1
ij wiexp(zT

ij β)

= αtα−1
ij exp(ηij)

with
ηij = zT

ij β + log(wi )
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Survival Models

Parametric models with frailty

Parametric models with frailty - Log-likekihood function

The likelihood function for the generic data (Tlo ,Tup, δ) is then

l = δh(Tup)−
∫ Tup

0
h(u)du + log{1− exp(−

∫ Tup

Tlo

h(u)du)}

= δ[logα + (α− 1)logTup + η]− eηTα
up + log{1− e−eη(Tα

up−Tα
lo )}
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Survival Models

Parametric models with frailty

Log-normal model for frailty

If we assume log(wi ) = εi to have a Gaussian prior N(0, τw ), the
parametric frailty model falls into the latent Gaussian family.

I The latent Gaussian field

x = {η11, ..., ηnmn , ε1, ...εn, β} ∼ N(0,Q−1)

I the hyperparameters
θ = (α, τw )

I The likelihood

π(data|x,θ) =

nd∏
i=1

π(data|ηi ,θ)

...and so no problem to apply INLA!!
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Survival Models

Parametric models with frailty

Example2 - Rat data

(Mantel et al.,1977) study time till tumor development in rats from
50 distinct litters, the covarite z is a treatment( drug or placebo),
w is the frailty variable (litter/cluster). The model is

h(tij ; zij ,wi , α) = αtα−1exp{β0 + β1z + log(wi )}

We assume
β0, β1 ∼ N(0, 0.001)

α, τw ∼ Γ(1, 0.001)
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Survival Models

Parametric models with frailty

Example2 - Rat data
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Survival Models

Parametric models with frailty

Example - Rat data
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Survival Models

Semiparametric model for hazard

Piecewise constant model for h0(t)

Divide the time line into J predefined intervals, Ik = (Sk ,Sk+1] for
k = 1, ..., J with 0 = s1 < ... < sJ <∞, we define the baseline
hazard as:

h0(t) = λk if t ∈ Ik = (sk , sk+1]

and the baseline survival is then:

S0(t) = exp{−
∫ t

0
h0(u)du} = exp{

k−1∑
j=1

(sj+1 − sj)λj − (t − sk)λk}
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Survival Models

Semiparametric model for hazard

Piecewise constant model for h0(t)

In general, let the hazard rate be

h(t; .) = h0(t)exp(zTβ) = exp{zTβ + logh0(t)}
= exp{zTβ + logλk}; t ∈ Ik

and assume a RW prior for the piecewise baseline hazard

logλ1, ..., logλJ | τλ ∼ RW (τλ)

then
ηk = zTβ + logλk | ... ∼ Gaussian
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Survival Models

Semiparametric model for hazard

Log-likelihood for right censored data

The log-likelihood contribution for a (possibly) right censored
observation t ∈ Ik is :

log [h(t; .)δS(t; .)] = δηk − {
k−1∑
j=1

(sj+1 − sj)e
ηj + (t − sk)eηk}

= δηk − (t − sk)eηk −
k−1∑
j=1

(sj+1 − sj)e
ηj

I This can be seen as the log likelihood from a Poisson with
mean (t − sk)eηk observed to be 0 or 1 according to δ

I This can be seen as the likelihood from k − 1 Poisson with
mean (sj+1 − sj)e

ηj observed to be 0
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Survival Models

Semiparametric model for hazard
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Survival Models

Semiparametric model for hazard

Log-likelihood for right censored data
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Survival Models

Semiparametric model for hazard

Log-likelihood for right censored data

Each data point ti is written as k ”augmented data points”
yi1, ...., yik coming from Poisson distribution
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Survival Models

Semiparametric models for hazard

Piecewise constant model for h0(t) as latent Gaussian field

I The latent Gaussian field

x = {logλ1, ..., logλJ , β, η11...}

I The hyperparameters
θ

I The ”augmented” Poisson data
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Survival Models

Semiparametric models for hazard

Example3 -Times to death for a Breast-cancer trial

(Sedmak et al., 1989) The time to death of 45 breast cancer
patients is analysed. The data are right censored. One binary
covariate z(immunohistochemical response) is also recorded.
The model is:

h(t; z) = h0(t)exp{β0 + β1z}

Moreover we divide the time line into 2 equal intervals

h0(t) = λk t ∈ Ik

and assume
logλ1, logλ2 ∼ RW 1(τλ)

β0, β1 ∼ N(0, 0.001)
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Survival Models

Semiparametric models for hazard

Example3 -Times to death for a Breast-cancer trial
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Survival Models

Semiparametric models for hazard

Example3 -Times to death for a Breast-cancer trial
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Survival Models

Semiparametric model for hazard

Piecewise linear model for h0(t)

Divide the time line into J predefined intervals, Ik = (Sk ,Sk+1] for
k = 1, ..., J with 0 = s1 < ... < sJ <∞, we define the baseline
hazard as:

h0(t) = λj +
λj+1 − λj

sj+1 − sj
t if t ∈ Ij = (sj , sj+1]
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Survival Models

Semiparametric model for hazard

Log-likelihood for right censored data

The log-likelihood contribution for a (possibly) right censored
observation t ∈ Ik

log [h(t; .)S(t; .)] = δηk − w1e
η1 −

k−1∑
j=2

wje
ηj − wkeηk − wk+1e

ηk+1

where, w ’s, the weights are

w1 =
s2 − s1

2
, wj =

sj+1 − sj−1

2

wk = t − sk + sk−1

2
− (t − sk)2

2(sk+1 − sk)
and wk+1 =

(t − sk)2

2(sk+ − sk)
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Survival Models

Semiparametric model for hazard

Example4-Times to death for a Breast-cancer trial
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Survival Models

Semiparametric model with spatial effect

Example5- Leukemia survival data

(Henderson et al.,2002) We study time to death for 1043
leukaemia patients.
The covariates included are age, wbc, tpi, sex and spatial
information on district level. Here η is

ηij = α+β.hazj +β.sex ∗ sexi +β.agei +β.tpii +β.wbci +β.spatiali
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Survival Models

Semiparametric model with spatial effect

Example5- Leukemia survival data

Assume
α, β.sex ∼ N(0, 0.001)

β.haz , β.age, β.tpi , β.wbc ∼ RW 1(τ ′s)

β.spatial ∼ besag
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Survival Models

Semiparametric model with spatial effect

Example5- Leukemia survival data
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Survival Models

Semiparametric model with spatial effect

Example5-Leukemia survival data
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Compared these with results by Kneib et al.,2007.
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Demo

Semiparametric model with spatial effect

Example5-Leukemia survival data-Demo

demo(Leuk)
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Demo

New inla input

New inla input

data=read.table(”data1.txt”, header = T) this is some data
n=length(data$time)
surv.time = list(truncation=rep(0,n), event =
data$event,lower=data$time,
upper = rep(0,n), time=data$time)
d = c(as.list(data), surv.time = surv.time)
formula = surv.time ∼ placement
model=inla(formula,family=”weibull”, data= d, verbose=TRUE,
keep=TRUE )
h=inla.hyperpar(model)
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Summary

Summary

I Many survival models fall in the latent Gaussian models family

I For such models INLA is a fast and reliable tool for estimate

I ... there is still lot to do to make INLA a more general tool for
survival models


	Introduction
	Outline
	Outline

	Survival Data
	Some definitions
	Censoring
	Likelihood

	Survival Models
	Model
	Model
	Parametric models
	The Weibull model
	Parametric models with frailty 
	Parametric models with frailty 
	Parametric models with frailty
	Parametric models with frailty
	Parametric models with frailty
	Parametric models with frailty
	 Semiparametric model for hazard
	 Semiparametric model for hazard
	 Semiparametric model for hazard
	 Semiparametric model for hazard
	Semiparametric models for hazard
	Semiparametric model for hazard
	Semiparametric model for hazard
	Semiparametric model for hazard
	Semiparametric model with spatial effect
	Semiparametric model with spatial effect
	Semiparametric model with spatial effect
	Semiparametric model with spatial effect

	Demo
	Semiparametric model with spatial effect
	New inla input

	Summary

