Shooting balloons

- *N* trail subjects, i = 1, 2, ..., N
- Each shot n_i times, trying to hit balloons.
- Count hits y_i.
- Explanatory variables:
 - Experienced / non-experienced gunman
 - Wind speed

Shooting balloons, data

Trail person	1	2	3	
Experiences	1	0	0	
Wind speed	2.13	0.59	1.03	
n _i	6	3	5	
Уi	2	1	1	

GLM

Generalized Linear Model

- **1** Likelihood; $f(y; \theta)$, member of the exponential family.
- 2 Link function; $g(\mu_i) = x_i \beta$, where $\mu_i = E(Y_i)$ and g() is monotone and differentiable.
- **3** Linear component of explanatory variables; $g(\mu) = X\beta$

Shooting balloons, model

- $Y_i \sim bin(n_i, \pi_i), i = 1, 2, ..., N$
- $\eta_i = logit(\pi_i) = log(\frac{p_i}{1-p_i})$
- $\mathbf{0}$ $\eta_i = \beta_0 \Rightarrow Y_i \sim bin(n_1, \pi)$

Where $x_1 = 1$ for experienced gunman, otherwise $x_1 = 0$ and x_2 is wind speed.

Exponential family

 $f(y;\theta)$ belongs to the exponential family if

$$f(y;\theta) = \exp[a(y)b(\theta)) + c(\theta) + d(y)]$$

Score statistics

Let $I(\theta; y_i)$ be log-likelihood function. Then the score statistic is:

$$U(\theta; y) = \frac{\partial I(\theta; y_i)}{\partial \theta}$$

Information

Let $U = U(\theta; Y)$ be the score statistic. Then the information is

$$\Im = Var(U)$$

If Y_i has pdf from exponential family:

•
$$\Im = E(U^2) = -E(\frac{\partial U}{\partial \theta}) = -E(\frac{\partial^2 I(\theta; y)}{\partial \theta^2})$$

Hight of male students

- In population: $Y \sim (179.8, 6.5^2)$
- Mean of 91 male students: 181.9
- NTNU students higher then Norwegians?

χ^2 () results ch 1.4 and 1.5

Definition χ^2

If $Z \sim N(0,1)$, then $Z^2 \sim \chi^2(1)$. If $Z_1, Z_2, \dots Z_n$ are independent identical distributed $Z_i \sim N(0,1)$, the $\sum_{i=1}^n Z_i^2 \sim \chi^2(n)$

Non iid

If $Y \sim MVN(\mu, \Sigma)$, then $(Y - \mu)^T \Sigma^{-1} (Y - \mu) \sim \chi^2(n)$

Subtraction

If $X_1^2\sim \chi^2(m)$ and $X_2^2\sim \chi^2(k)$, m>k, and X_1^2 and X_2^2 are independent, we have: $X^2=X_1^2-X_2^2\sim \chi^2(m-k)$

5.3 Taylor series approximations for log-likelihood

Taylor approximations for $I(\beta)$ near estimate b:

$$I(\beta) = I(b) + (\beta - b)U(b) + \frac{1}{2}(\beta - b)^2U'(b)$$

Approximate U'(b) with $E(U') = -\Im(b)$:

$$I(\beta) = I(b) + (\beta - b)U(b) - \frac{1}{2}(\beta - b)^2$$

For a vector b

$$I(\beta) = I(b) + (\beta - b)U(b) - \frac{1}{2}(\beta - b)^{\mathsf{T}}\Im(\beta - b)$$

5.3 Taylor series approximations for log likelihood

$$U(\beta) = U(b) - (\beta - b)U'(b)$$

Approximate U'(b) with $E(U') = -\Im(b)$:

$$U(\beta) = U(b) - (\beta - b)\Im(b)$$