Introduction Chp 3

Linear Model

- **1** Response: $Y_i \sim N(\mu_i, \sigma^2)$, Y_i s independent
- 2 Linear relationship: $E(Y_i) = \mu_i = x_i^T \beta_i$

We extend this class of models by:

- Response from exponential family of distributions.
 - ② Non-linear link: $g(\mu_i) = x_i^T \beta$

Exponential family

Definition

 $f(y;\theta)$ belongs to the exponential family if

$$f(y; \theta) = \exp[a(y)b(\theta)) + c(\theta) + d(y)]$$

Examples:

- Normal
- Binomial
- Poisson
- Chi-square
- Gamma
- Beta

Historical Linguistics

- Inspired by Ch 3.5.2.
- Interested in languages that descend from the same historical languages.
 - Norwegian and Swedish from Norse.
 - Modern French and Spanish from Latin.
- Languages that are separated by time t.
- Probability that a particular meaning has cognate words, $\exp(-\lambda t)$.
- Data: A linguist (Clue) judges if N different meanings are cognate:

Meaning	Norwegian	Swedish	Cognate
Laugh	Le	Skratta	No
House	Hus	Hus	Yes
Similar data for Spanish and French.			

- **1** Probability function, $Y_i \sim f(y, \theta_i)$
- 2 Link function, $g(\mu_i) = x_i^T \beta$

Explanatory variables and parameters

- **1** Probability function, $Y_i \sim f(y, \theta_i)$
 - $Y_i \sim bin(1, p_i)$ with $p_i = exp(-\lambda t_i) = \theta_i$
- 2 Link function, $g(\mu_i) = x_i^T \beta$

Explanatory variables and parameters

- **1** Probability function, $Y_i \sim f(y, \theta_i)$
 - $Y_i \sim bin(1, p_i)$ with $p_i = \exp(-\lambda t_i) = \theta_i$
- 2 Link function, $g(\mu_i) = x_i^T \beta$

3 Explanatory variables and parameters

Parameter: $\beta = \lambda$

Explanatory variable: t_i , time since separation.

 $X = [t_{ns}, t_{ns}, \dots t_{ns}, t_{sf}, \dots, t_{sp}]$. t-s are assumed known.

- **1** Probability function, $Y_i \sim f(y, \theta_i)$
 - $Y_i \sim bin(1, p_i)$ with $p_i = exp(-\lambda t_i) = \theta_i$
- 2 Link function, $g(\mu_i) = x_i^T \beta$
 - $\mu_i = E(Y_i) = p_i = \exp(-\lambda t_i)$
 - $g(\mu_i) = log(\mu_i)$
- 3 Explanatory variables and parameters

Parameter: $\beta = \lambda$

Explanatory variable: t_i , time since separation.

 $X = [t_{ns}, t_{ns}, \dots t_{ns}, t_{sf}, \dots, t_{sp}]$. t-s are assumed known.

- **1** Probability function, $Y_i \sim f(y, \theta_i)$
 - $Y_i \sim bin(1, p_i)$ with $p_i = \exp(-\lambda t_i) = \theta_i$
- 2 Link function, $g(\mu_i) = x_i^T \beta$

$$\mu_i = E(Y_i) = p_i = \exp(-\lambda t_i)$$

- $g(\mu_i) = log(\mu_i)$
- 3 Explanatory variables and parameters

Parameter:
$$\beta = \lambda$$

Explanatory variable: t_i , time since separation.

$$X = [t_{ns}, t_{ns}, \dots t_{ns}, t_{sf}, \dots, t_{sp}].$$
 t-s are assumed known.

Ideas extended model:

- Categories of meanings:
 - ★ Feelings
 - ★ Body parts
 - Mathematical terms
- Number of syllable.

