## Shooting balloons



- *N* trail subjects, i = 1, 2, ..., N
- Each shot  $n_i$  times, trying to hit balloons.
- Count hits y<sub>i</sub>.
- Explanatory variables:
  - Experienced / non-experienced gunman
  - Wind speed

# Shooting balloons, data



| Trail person          | 1    | 2    | 3    |  |
|-----------------------|------|------|------|--|
| Experiences           | 1    | 0    | 0    |  |
| Wind speed            | 2.13 | 0.59 | 1.03 |  |
| n <sub>i</sub>        | 6    | 3    | 5    |  |
| <i>y</i> <sub>i</sub> | 2    | 1    | 1    |  |

## Shooting balloons, model



- $Y_i \sim bin(n_i, \pi_i), i = 1, 2, ..., N$
- $\eta_i = logit(\pi_i)$
- $\mathbf{0}$   $\eta_1 = \beta_0 \Rightarrow Y_i \sim bin(n_1, \pi)$

Where  $x_1 = 1$  for experienced gunman, otherwise  $x_1 = 0$  and  $x_2$  is wind speed.



## Hight of male students

- In population:  $Y \sim (179.8, 6.5^2)$
- Mean of 91 male students: 181.9
- NTNU students higher then Norwegians?

### Score function and information

#### Score statistics

Let  $I(\theta; y_i)$  be log-likelihood function. Then the score statistic is:

$$U(\theta; y) = \frac{\partial I(\theta; y_i)}{\partial \theta}$$

### Information

Let  $U = U(\theta; Y)$  be the score statistic. Then the information is

$$\Im = Var(U) = -\frac{d^2I}{d\theta^2}$$



## 5.3 Taylor series approximations for log-likelihood

Taylor approximations for  $I(\beta)$  near estimate b:

$$I(\beta) = I(b) + (\beta - b)U(b) + \frac{1}{2}(\beta - b)^2U'(b)$$

Approximate U'(b) with  $E(U') = -\Im(b)$ :

$$I(\beta) = I(b) + (\beta - b)U(b) - \frac{1}{2}(\beta - b)^2$$

For a vector b

$$I(\beta) = I(b) + (\beta - b)U(b) - \frac{1}{2}(\beta - b)^{T}\Im(\beta - b)$$

## 5.3 Taylor series approximations for log likelihood

$$U(\beta) = U(b) - (\beta - b)U'(b)$$

Approximate U'(b) with  $E(U') = -\Im(b)$ :

$$U(\beta) = U(b) - (\beta - b)\Im(b)$$