Today

Goal

Find maximum likelihood estimates for parameters in Generalized Linear Models.

Generalized Linear Model

- **1** Likelihood; $f(y; \theta)$, member of the exponential family.
- 2 Link function; $g(\mu_i) = x_i\beta$, where $\mu_i = E(Y_i)$ and g() is monotone and differentiable.

Solution Linear component of explanatory variables; $g(\mu) = X\beta$ TO DO:

- Linguist example, ML
- Newton-Raphson method
- Method of scoring for GLM
 - Univariate
 - Multivariate \Rightarrow iterative weighted least square

Examples

Historical Linguistics

- Inspired by Ch 3.5.2.
- Interested in languages that descend from the same historical languages.
 - Norwegian and Swedish from Norse.
 - Modern French and Spanish from Latin.
- Languages that are separated by time t.
- Probability that a particular meaning has cognate words, $\exp(-\lambda t)$.
- Data: A linguist (*Clue*) judges if *N* different meanings are cognate:

Meaning	Norwegian	Swedish	Cognate
Laugh	Le	Skratta	No
House	Hus	Hus	Yes
Similar data for Spanish and French.			

• Probability function, $Y_i \sim f(y, \theta_i)$

2 Link function,
$$g(\mu_i) = x_i^T \beta$$

Explanatory variables and parameters

• • = • • = •

Model

Probability function, Y_i ~ f(y, θ_i)
Y_i ~ bin(1, p_i) with p_i = exp(−λt_i) = θ_i
Link function, g(μ_i) = x_i^Tβ

Explanatory variables and parameters

→ Ξ →

Model

Probability function, Y_i ~ f(y, θ_i)
Y_i ~ bin(1, p_i) with p_i = exp(-λt_i) = θ_i
Link function, g(μ_i) = x_i^Tβ

Section 2 Sec

Parameter: $\beta = \lambda$ Explanatory variable: t_i , time since separation. $X = [t_{ns}, t_{ns}, \dots, t_{ns}, t_{sf}, \dots, t_{sp}]$. *t*-s are assumed known.

Model

1 Probability function, $Y_i \sim f(y, \theta_i)$ • $Y_i \sim bin(1, p_i)$ with $p_i = \exp(-\lambda t_i) = \theta_i$ 2 Link function, $g(\mu_i) = x_i^T \beta$ • $\mu_i = E(Y_i) = p_i = \exp(-\lambda t_i)$ • $g(\mu_i) = \log(\mu_i)$ Sector 2 Parameter: $\beta = \lambda$ Explanatory variable: t_i , time since separation. $X = [t_{ns}, t_{ns}, \dots, t_{ns}, t_{sf}, \dots, t_{sn}]$. t-s are assumed known.

Exponential family

 $f(y; \theta)$ belongs to the exponential family if

$$f(y;\theta) = \exp[a(y)b(\theta)) + c(\theta) + d(y)]$$

Score statistics

Let $I(\theta; y_i)$ be log-likelihood function. Then the score statistic is:

$$U(\theta; y) = \frac{\partial I(\theta; y_i)}{\partial \theta}$$

Information

Let $U = U(\theta; Y)$ be the score statistic. Then the information is

$$\Im = Var(U)$$

If Y_i has pdf from exponential family:

•
$$\Im = E(U^2) = -E(\frac{\partial U}{\partial \theta}) = -E(\frac{\partial^2 l_i(\theta; y_i)}{\partial \theta^2})$$

Model, historical linguistics

1 Probability function, $Y_i \sim f(y, \theta_i)$ • $Y_i \sim bin(1, p_i)$ with $p_i = \exp(-\lambda t_i) = \theta_i$ 2 Link function, $g(\mu_i) = x_i^T \beta$ • $\mu_i = E(Y_i) = p_i = \exp(-\lambda t_i)$ • $g(\mu_i) = \log(\mu_i)$ Section 2 (19) Sec Parameter: $\beta = \lambda$ Explanatory variable: t_i , time since separation. $X = [t_{ns}, t_{ns}, \dots, t_{ns}, t_{sf}, \dots, t_{sp}]$. t-s are assumed known.

Model, historical linguistics

1 Probability function, $Y_i \sim f(y, \theta_i)$ • $Y_i \sim bin(1, p_i)$ with $p_i = \exp(-\lambda t_i) = \theta_i$ 2 Link function, $g(\mu_i) = x_i^T \beta$ • $\mu_i = E(Y_i) = p_i = \exp(-\lambda t_i)$ • $g(\mu_i) = \log(\mu_i)$ Explanatory variables and parameters Parameter: $\beta = \lambda$ Explanatory variable: t_i , time since separation. $X = [t_{ns}, t_{ns}, \dots, t_{ns}, t_{sf}, \dots, t_{sp}]$. t-s are assumed known.

- $Var(Y_i) = p_i(1-p_i) = \exp(-\lambda t_i)(1-\exp(-\lambda t_i))$
- Different variance \Rightarrow weights
- a non-linear link.

- Data: Survival (y_i) in weeks and log initial number of white blood cell count (x_i) for 17 patients.
- Model: $Y_i \sim gamma(\theta_1, \theta_2)$ • $\mu = E(Y_i) = \theta_1 \theta_2 = \exp(\beta_0 + \beta_1 x)$ • $g(\mu) = \log(\mu) = X\beta$