Linear Model

- **1** Response: $Y_i \sim N(\mu_i, \sigma^2)$, Y_i s independent
- 2 Linear relationship: $E(Y_i) = \mu_i = x_i^T \beta_i$

We extend this class of models by:

- Response from exponential family of distributions.
- **2** Non-linear link: $g(\mu_i) = x_i^T \beta$

Definition

 $f(y; \theta)$ belongs to the exponential family if

$$f(y;\theta) = \exp[a(y)b(\theta)) + c(\theta) + d(y)]$$

Examples:

- Normal
- Binomial
- Poisson
- Chi-square
- Gamma
- Beta

Historical Linguistics

- Inspired by Ch 3.5.2.
- Interested in languages that descend from the same historical languages.
 - Norwegian and Swedish from Norse.
 - Modern French and Spanish from Latin.
- Languages that are separated by time t.
- Probability that a particular meaning has cognate words, $\exp(-\lambda t)$.
- Data: A linguist (*Clue*) judges if *N* different meanings are cognate:

Meaning	Norwegian	Swedish	Cognate
Laugh	Le	Skratta	No
House	Hus	Hus	Yes
Similar data for Spanish and French.			

- **1** Probability function, $Y_i \sim f(y, \theta_i)$
- 2 Link function, $g(\mu_i) = x_i^T \beta$

S Explanatory variables and parameters

• • = • • = •

Probability function, Y_i ~ f(y, θ_i)
Y_i ~ bin(1, p_i) with p_i = exp(-λt_i) = θ_i
Link function, g(μ_i) = x_i^Tβ

S Explanatory variables and parameters

★ ∃ →

Solution Explanatory variables and parameters Parameter: $\beta = \lambda$

Explanatory variable: t_i , time since separation.

 $X = [t_{ns}, t_{ns}, \dots, t_{ns}, t_{sf}, \dots, t_{sp}]$. *t*-s are assumed known.

▶ < ∃ ▶</p>

Probability function, Y_i ~ f(y, θ_i)
Y_i ~ bin(1, p_i) with p_i = exp(-λt_i) = θ_i
Link function, g(μ_i) = x_i^Tβ
μ_i = E(Y_i) = p_i = exp(-λt_i)
g(μ_i) = log(μ_i)
Explanatory variables and parameters
Parameter: β = λ
Explanatory variable: t_i, time since separation.
X = [t_{ns}, t_{ns}, ..., t_{ns}, t_{sf}, ..., t_{sp}]. t-s are

assumed known.

1 Probability function, $Y_i \sim f(y, \theta_i)$ • $Y_i \sim bin(1, p_i)$ with $p_i = \exp(-\lambda t_i) = \theta_i$ 2 Link function, $g(\mu_i) = x_i^T \beta$ • $\mu_i = E(Y_i) = p_i = \exp(-\lambda t_i)$ • $g(\mu_i) = \log(\mu_i)$ Section 2 (19) Sec Parameter: $\beta = \lambda$ Explanatory variable: t_i , time since separation. $X = [t_{ns}, t_{ns}, \dots, t_{ns}, t_{sf}, \dots, t_{sn}]$. t-s are assumed known

Ideas extended model:

- Categories of meanings:
 - Feelings
 - Body parts
 - Mathematical terms
- Number of syllable.