House sparrows

Response modeled with explanatory variables.

- Tarsus length continuous
 - Hatch island factor, 5 levels
 - Sex factor, 2 levels
 - NAO covariate
- 2 Dispersal, categorical, binary
 - Hatch island factor, 5 levels
 - Sex factor, 2 levels
 - NAO covariate
 - Wing length covariate
- Number of off-spring categorical, counts
 - Dispersal factor, 2 levels
 - Hatch island factor, 5 levels
 - Body mass covariate

Example: Chronically medical conditions

- Women in rural area see GP less then women in urban area.
- Why? Less sick or less accessible?

Example: Chronically medical conditions

- Women in rural area see GP less then women in urban area.
- Why? Less sick or less accessible?

Data

- Group 1: No. of chronically conditions for 26 town women with \leq 3 GP visits.
- Group 2: No. of chronically conditions for 23 town women with < 3 GP visits.

Do women in the two groups with the same number of visits have the same need?

Model and hypothesis

 y_{jk} : Woman j from group k.

 H_0 Same need: $Y_{jk} \sim Po(\theta)$

 H_1 Different needs: $Y_{jk} \sim Po(\theta_k)$

Maximum Likelihood Estimation (MLE)

Likelihood function: Joint probability function for all data seen as function of parameter(s).

MLE: Optimum for parameter(s).

- Find likelihood function $L(\theta, y)$
- 2 Find optimum:
 - Find log-likelihood: $I(\theta, y) = \log(L(\theta, y))$
 - Solve $\frac{\partial}{\partial \theta} I(\theta, y) = 0$ for θ

Standardized residuals

Normal model: $E(Y_i) = \mu_i$, $Y_i = N(\mu_i, \sigma^2)$ Poisson model: $E(Y_i) = \theta_i$, $Y_i \sim Po(\theta_i)$

- $r_i = \frac{y_i \hat{\mu}_i}{\hat{\sigma}}$
- $r_i = \frac{y_i \hat{\theta}}{\sqrt{\hat{\theta}}}$

If model is correct: Approximately: $r_i \sim N(0,1)$ Plots for r_i

- qq-plot
- against each explanatory variable
- other potential explanatory variables
- plot r_i vs $\hat{y_i}$ (check assumption of constant variance / homoscedasity)
- plot r_i in order y_i was measured.

Assignment 5

- We recommend binary data with at least one continuous and one nominal/ordinal explanatory variable.
- But any data / model that fit the course is OK.
- Discuss with Ingelin and Thiago!

Find a friend and start today!